Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Record First "Pheromone Images" in Brains of Mice

14.02.2003


Howard Hughes Medical Institute researchers are beginning to unravel how a mysterious sixth sense guides animal attraction. The scientists have made the first-ever recordings of patterns of brain activity in a mouse as it explores the sex and identity of a newly encountered animal.

The research team, led by Lawrence C. Katz, a Howard Hughes Medical Institute investigator at Duke University Medical Center, recorded the firing of neurons in the accessory olfactory bulb, part of a poorly understood sensory pathway that is thought to be important in sex discrimination and social behavior in most mammals. Katz presented his research findings at the annual meeting of the American Association for the Advancement of Science in Denver, Colorado.

The results of the studies, which will also be published in a future issue of the journal Science, show that chemical signals called pheromones trigger highly specific patterns of neural excitation in the brain. These “pheromone images” provide vital information about the sexual receptiveness of females and the dominance hierarchy in males, among other things, said Katz.



“Mice, which live in the darkness in the wild, can readily identify each other on the basis of a pheromonal image rather than a visual image,” said Katz.

Both wild and domestic animals, such as dogs and cats, collect pheromone signals through the “flehmen” response, in which the upper lip curls back during exploration of the oral and anogenital areas of other animals during social encounters. These pheromone signals are collected by the vomeronasal organ (VNO), a hollow tube in the nasal cavity. Sensory neurons lining the VNO, in turn, stimulate neurons in the accessory olfactory bulb, a part of the central nervous system. Finally, signals are sent to the amygdala, a part of the brain responsible for basic drives, such as fear, aggression, mating behavior and maternal instincts.

The information contained in pheromone signals is key to survival and reproduction, said Katz. Male mice establish dominance hierarchies, so they need to know if another male is dominant or non-dominant. In addition, males respond to females who are in estrus because they smell differently. “In essence,” said Katz, “these pheromonal cues help mice decide `should I mate or fight.’”

Important clues to the VNO’s importance in sex recognition have emerged from genetic studies. For example, HHMI investigator Catherine Dulac and her colleagues at Harvard University reported in January 2002 that mice lacking a key molecule in the pheromone-signaling pathway were unable to distinguish males from females and behaved as if all mice were female.

To capture the pheromonal image created by this accessory olfactory system, Katz and his colleagues, which included Minmin Luo of Duke and Michale Fee of Lucent Technologies in Murray Hill, N.J., developed miniature electrodes and micromotors to record the firing of individual neurons in mice that were awake and behaving normally. The electrodes were implanted in the accessory olfactory bulb, which along with the main olfactory system, processes pheromone signals. The micromotors, which are about the size and shape of a pencil eraser, were light and unobtrusive, so they did not interfere with the normal activities of the mice, said Katz. Once the recording device was attached to the mouse, the researchers introduced another mouse into the cage and allowed the two to interact. In each case, test animals repeatedly explored the faces and anogenital areas of the stimulus animals with their snouts.

The scientists then recorded male mouse responses to females, males of the same and different genetic backgrounds, and castrated males. To be certain they were recording responses to pheromones, the scientists also recorded responses as the test mice investigated fake mice, which never evoked any neuronal response.

“No one has ever recorded from this area because it only works while the animals are awake and exploring their environment,” said Katz. “What we’ve done is look at how that sensory information is sent into a central location and what kind of information is represented in the brain.”

When they began their studies, the scientists hypothesized that individual neurons might be responsible for detecting “maleness” or “femaleness,” but instead they found a much more sophisticated sensory system that could distinguish individuals with great fidelity.

“The most exciting thing we found was that individual neurons were responsive to individual animals. Each type of animal encountered set off a unique pattern of neural excitation or inhibition,” said Katz. “We did not see any neurons that responded to all male mice or to all female mice. They responded to the male mice of a specific genetic identity, but not to male mice of other genetic backgrounds. This suggests there must be pheromones that male mice of one genetic identity have, but that male mice of another genetic identity do not. In essence, each individual animal has a different pheromonal signature.”

“What we also learned,” he added, “is that there must be pheromonal signals, whose identity we do not yet know, that carry information about sexual identity.”

There is evidence that humans also respond to pheromone signals, said Katz. “Don’t forget that for years the main ingredient in perfume was a secretion from the anal gland of the civet cat, which is probably full of pheromones. In addition, there is evidence in humans that pheromone-like molecules activate different parts of the brain than standard odorants. And a lot of people think that kissing and all of the other oral investigations that humans engage in is a vestige or even an ongoing part of this pheromone system.”

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/katz2.html

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>