Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover anxiety and aggression gene in mice

23.01.2003


Opens new door to study of mood disorders in humans



Researchers report finding a gene that is essential for normal levels of anxiety and aggression. Calling it the Pet-1 gene, researchers at the Case Western Reserve University School of Medicine Department of Neurosciences say that when this gene is removed or "knocked out" in a mouse, aggression and anxiety in adults are greatly elevated compared to a control (also called wild type) mouse.

(Videos displaying aggressive behavior of Pet-1 knockout mice can be viewed at http://neurowww.cwru.edu/faculty/deneris.shtml; click Movies Link.)


Other neurologic functions, such as motor coordination, feeding, and locomotor activity, do not appear altered in the knockout mouse.

Anxiety and aggression are normal and important behaviors that allow individuals to respond appropriately to threats or cope with a challenging environment. However, it is clear that uncontrollable or excessive anxiety and aggression can be counterproductive.

"The behavior of Pet-1 knockout mice is strikingly reminiscent of some human psychiatric disorders that are characterized by heightened anxiety and violence," says Evan Deneris, Ph.D., principal investigator of the study and a neuroscientist at CWRU. The study is published in the Jan. 23 issue of the science journal Neuron.

Previously, Deneris’ lab showed that in the brain Pet-1 is active only in serotonin nerve cells or neurons, a relatively small number of cells (among the trillions of neurons in a human brain, only a few hundred thousand produce serotonin) that profoundly affect emotions. Serotonin is a chemical that acts as a messenger or neurotransmitter allowing neurons to communicate with one another in the brain and spinal cord. It is important for ensuring an appropriate level of anxiety and aggression. Defective serotonin neurons have been linked to excessive anxiety, impulsive violence, and depression in humans.

Antidepressant drugs such as Prozac and Zoloft work by increasing serotonin activity and are highly effective at treating many of these disorders. But it is unknown why some people have dysfunctional serotonin neurons and whether this can be caused by defects in genes that are normally required for their early development.

"We have now shown that Pet-1 is required specifically for fetal development of serotonin neurons," says Deneris. In mice missing this gene, most serotonin neurons fail to be generated in the fetus and the ones that remain are defective. This leads to very low serotonin levels throughout the developing brain, which in turn results in altered behavior in adults. "This is the first gene shown to impact adult emotional behavior through specific control of fetal serotonin neuron development."

Deneris and his colleagues employed sensitive tests of aggression and anxiety to compare the behavior of the knockout mice to wild type mice. One such aggression test measures a mouse’s response time to an intruder mouse entering its territory. The Pet-1 knockout mice attacked intruders much more quickly and more often than wild type mice. In fact, knockout mice often would not engage in normal exploratory behavior directed toward the intruder before attacking it. Excessive anxiety-like behavior was evident in another test, measuring the amount of time a mouse spends in open unprotected areas of a test chamber compared to closed protected areas. Unlike normal mice, which will enter and explore an unprotected portion of the test chamber, the Pet-1 knockout mice avoided this area all together, indicating abnormal anxiety-like behavior.

The human and mouse serotonin systems share many anatomical and functional features, and the same Pet-1 gene is present in the human genome. Therefore, Deneris’ discovery creates the first animal model for gaining a greater understanding of the causes of abnormal anxiety and aggression brought about through defective early serotonin neuron development. Deneris also sees this knockout mouse being used as a model for screening new drugs that can treat both aggression and anxiety. "If in fact particular genetic variants of Pet-1 are associated with excessive anxiety or violent activity in humans, then tests to detect these variants might be useful for early diagnosis of people who may be at risk for developing these abnormal behaviors," Deneris says. His lab plans more studies in mice to see how the gene affects sleep-wake patterns, learning and memory, and sexual behavior – all functions controlled in part by serotonin.


###
Lead authors on the study are Timothy J. Hendricks, and Dmitry V. Fyodorov, who were graduate students in Deneris’s lab at the time of the study. Other authors are, from CWRU: Lauren J. Wegman, Nadia B. Lelutiu, Elizabeth A. Pehek, Ph.D., Bryan Yamamoto, Ph.D., and Jerry Silver, Ph.D.; and, from Baylor College of Medicine, Edwin J. Weeber, Ph.D., and J. David Sweatt, Ph.D.


George Stamatis | EurekAlert!
Further information:
http://neurowww.cwru.edu/faculty/deneris.shtml
http://www.cwru.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>