Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female Hormones Found To Protect Against Harmful Effects Of Fructose

21.01.2003


Groundbreaking study in female mice links estrogen, lower blood pressure, and insulin resistance, despite a high fructose diet



Bethesda, MD – High-fructose corn syrup replaced sucrose (table sugar) as a sweetener in most grocery products some 20 years ago. Today, about nine percent of the average dietary energy intake in the U.S. comes from fructose. However, a number of nutritionists are alarmed by the amount of the public’s consumption, as previous research has demonstrated that a fructose diet can lead to insulin resistance and hypertension, particularly in male laboratory animals.

Effects of Fructose In Female Rats?


Other study results have been uncertain as to whether elevated blood pressure found in female rats was related to impairments in insulin sensitivity, or if there were any differences between sexes in terms of insulin sensitivity. These findings raised an important question regarding the effects of fructose in female rats, and whether hyperinsulinemia and insulin resistance lead to hypertension as in male rats. Therefore, based on previous research, it has not been possible to discern what role sex plays in the relationship between hyperinsulinemia/insulin resistance and hypertension (if any).

Given the differences in the incidence and cause of cardiovascular disease in men and women, a team of Canadian researchers hypothesized that sex gender may affect the relationship between hyperinsulinemia/insulin resistance and hypertension. To investigate this hypothesis, they designed experiments to clarify the effect of a high-carbohydrate (fructose) diet in both male and female rats on the development of hyperinsulinemia, insulin resistance, and hypertension. They also examined the role of the sex hormones in the response to a fructose diet in females and examined vascular responses to insulin.

The Study

The authors of “Female Rats are Protected Against Fructose-Induced Changes in Metabolism and Blood Pressure,” are Denise Galipeau and John H. McNeill Division of Pharmacology and Toxicology, University of British Columbia, Vancouver, British Columbia, and Subodh Verma at the Division of Cardiac Surgery, The Toronto Hospital, Toronto, Ontario, Canada. Their findings are published in the December 2002 edition of the American Journal of Physiology-Heart and Circulatory Physiology. The Journal is one of 14 scientific journals published every month by the American Physiological Society (APS).

Methodology

Several experiments were conducted within this study.

Blood Pressure Study #1
Two experimental groups of Wistar rats were used in this study: eight female controls and eight female fructose treated. Pilot groups of male control (M) and fructose-treated (MT) rats were followed at the same time to observe hyperinsulinemia and hypertension but were not included in the statistical analyses. At the age of six weeks, treatment groups were started on a diet of 60 percent fructose for nine weeks, whereas control groups were maintained on normal laboratory rat chow. Systolic BP was measured before treatment and weekly throughout the study period via the tail-cuff method. Blood samples for determination of five hour fasted plasma insulin, glucose, and triglycerides were obtained at study weeks 0, 2, 5, and 7. An oral glucose tolerance test (OGTT) after an overnight fast was performed at study weeks 4 and 8. Glucose was administered orally, and blood samples were collected at the times of 0, 10, 20, 30, and 60 minutes. All blood samples were collected from the tail vein.

Blood Pressure Study #2
Four groups of female Wistar rats, 15 weeks of age, were used. Of this number, eight were in a control group, eight fructose-fed, eight ovariectomized, and eight ovariectomized and fructose-fed. The fructose fed groups began a 60 percent fructose diet that was started on the same day as the ovariectomy, whereas the control and ovariectomized groups received normal diet. Systolic blood pressure was measured weekly beginning at week 2. Blood samples were collected after a 5-hour fast during study weeks 0, 2, 4, and 6. At week 7, an OGTT was performed as described above. At termination, ovariectomy was confirmed by visual inspection, and blood was collected via cardiac puncture for measurement of plasma total estrogens.

Results

The findings demonstrated that female rats are protected against the metabolic defects and hypertension typically produced by fructose feeding in male rats. Hyperinsulinemia and insulin resistance are believed to be the primary defects that cause hypertension in the fructose-fed male rat model. (To the researchers’ knowledge, this is the first report measuring blood pressure and insulin sensitivity simultaneously in both sexes of fructose-fed rats.)

In both groups of intact female rats, the fructose diet failed to cause any increase in blood pressure, and neither glucose tolerance nor insulin sensitivity were affected. However, increases in plasma triglyceride concentrations were observed. In this experiment, the increase in plasma triglycerides required five weeks to develop in the female rats and was relatively mild compared with that seen in males. Whereas this is merely a qualitative comparison, it does suggest that there may be quantitative and duration-dependent differences between sexes in this response.

Discussion

The researchers suggest two possible explanations may be postulated for the sex differences described. First, there may be mechanisms present only in male rats necessary to facilitate the effects of fructose on metabolism, or, second, female rats may possess countermechanisms that protect against the adverse effects of fructose.

They suggest these mechanisms, if present, may be linked to sex hormones. They cite two earlier studies in sucrose-fed rats, an increase in blood pressure was observed in the study with juvenile rats as the experimental age group . A possible explanation for the discrepancy between past studies and these results could be the difference in hormonal status between juvenile and mature rats. If estrogen is indeed protective against the adverse effects of high carbohydrate feeding, blood pressure may increase in high carbohydrate-fed juvenile female rats because estrogen levels would likely not play a role until sexual maturity.

To determine whether female sex hormones were involved in preventing the effects of fructose on metabolism and blood pressure, the researchers examined the response to fructose in ovarectomized female rats. This experiment demonstrated that female rats, in the absence of normal levels of ovarian sex hormones, develop an increase in blood pressure as seen in male rats after being fed with fructose. Although it is well established that estrogen has many cardiovascular benefits, a lack of sex hormones alone in these animals did not cause a significant change in blood pressure. Their data indicated that the combination of fructose diet and estrogen/sex hormone deficiency are required to elevate blood pressure in female rats.

Conclusions

These experiments demonstrate that the effects of a fructose diet on metabolism and blood pressure are dependent on sex gender. Female rats are protected against fructose-induced hypertension, unlike their male counterparts, and the mechanisms responsible for this protection appear to be related to female sex hormones.

Furthermore, there appears to be a sex difference in the vascular actions of insulin, which may also be involved in the mechanisms responsible for the sex differences observed in this experiment. The results of these experiments represent a novel finding into the interrelationship among hyperinsulinemia, insulin resistance, and hypertension. The potential existence of sex differences in this intriguing association might help elucidate the mechanisms involved and are worthy of further investigation.

Source: December 2002 edition of the American Journal of Physiology-Heart and Circulatory Physiology.



The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org/press_room/journal/release1-14-03.htm

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>