Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques in plant chloroplast division hold hope for agriculture

20.01.2003


Ground-breaking research at the University of Leicester into the division of chloroplasts holds out hope of a safer way of genetically modifying crops, with implications for agriculture particularly in the developing world.



Using three plant types – Arabidopsis, tomato and rice – Dr Simon Geir Møller has been working with colleagues in the University of Leicester Department of Biology and at the Laboratory of Plant Molecular Biology at the Rockefeller University in New York to examine how chloroplasts divide in plants.

Chloroplasts make plants green and are important organelles of plant cells and vital for life on earth. Chloroplasts perform numerous tasks such as photosynthesis (generation of oxygen) and the production of amino acids and fatty acids. They have their own unique, and very small, genome, and are derived from bacteria.


Comparing cell division in the E. coli bacterium with the way chloroplasts divide, the research team has isolated a new component of the division machinery in Arabidopsis, AtMinE1, and they have shown that this protein represents an evolutionary conserved link between bacterial division and chloroplast division.

Dr Møller explained: “People have tried for a long time to add genes to the chloroplast genome and adapt the levels of proteins in them. You can engineer complex pathways in chloroplasts that you can’t achieve in a cell nucleus.

“The main advantage is that chloroplasts are not spread by pollen, so there is no environmental hazard in plants genetically modified in this way. In other words there wouldn’t be any cross-pollination or the development of unwanted ‘superweeds’. The gene basically dies with the plant.

“The problem is that so far this has only been done in tobacco and once in the tomato plant. Our research involves genetically controlled enlarging of the chloroplasts, so that we can blast them more efficiently with DNA attached to gold particles encoding valuable proteins followed by re-manipulation of the division process.”

The work was recently published in The Plant Journal, in a report entitled “The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis”, by Dr Simon Geir Møller and Jodi Maple of the University of Leicester Department of Biology and Nam-Hai Chua of the Laboratory of Plant Molecular Biology, the Rockefeller University, New York.

The research team is also working with collaborators in the USA on putting vaccines into chloroplasts of plants so that they can be eaten.

The research in the laboratory of Dr Simon Geir Møller is funded by the Biotechnology and Biological Sciences Research Council, The Royal Society, The John Oldacre Foundation, The Ambrose and Ann Appelbe Trust and a HEROBC Innovation Fellowship funded by HEFCE.

Barbara Whiteman | alfa

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>