Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques in plant chloroplast division hold hope for agriculture

20.01.2003


Ground-breaking research at the University of Leicester into the division of chloroplasts holds out hope of a safer way of genetically modifying crops, with implications for agriculture particularly in the developing world.



Using three plant types – Arabidopsis, tomato and rice – Dr Simon Geir Møller has been working with colleagues in the University of Leicester Department of Biology and at the Laboratory of Plant Molecular Biology at the Rockefeller University in New York to examine how chloroplasts divide in plants.

Chloroplasts make plants green and are important organelles of plant cells and vital for life on earth. Chloroplasts perform numerous tasks such as photosynthesis (generation of oxygen) and the production of amino acids and fatty acids. They have their own unique, and very small, genome, and are derived from bacteria.


Comparing cell division in the E. coli bacterium with the way chloroplasts divide, the research team has isolated a new component of the division machinery in Arabidopsis, AtMinE1, and they have shown that this protein represents an evolutionary conserved link between bacterial division and chloroplast division.

Dr Møller explained: “People have tried for a long time to add genes to the chloroplast genome and adapt the levels of proteins in them. You can engineer complex pathways in chloroplasts that you can’t achieve in a cell nucleus.

“The main advantage is that chloroplasts are not spread by pollen, so there is no environmental hazard in plants genetically modified in this way. In other words there wouldn’t be any cross-pollination or the development of unwanted ‘superweeds’. The gene basically dies with the plant.

“The problem is that so far this has only been done in tobacco and once in the tomato plant. Our research involves genetically controlled enlarging of the chloroplasts, so that we can blast them more efficiently with DNA attached to gold particles encoding valuable proteins followed by re-manipulation of the division process.”

The work was recently published in The Plant Journal, in a report entitled “The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis”, by Dr Simon Geir Møller and Jodi Maple of the University of Leicester Department of Biology and Nam-Hai Chua of the Laboratory of Plant Molecular Biology, the Rockefeller University, New York.

The research team is also working with collaborators in the USA on putting vaccines into chloroplasts of plants so that they can be eaten.

The research in the laboratory of Dr Simon Geir Møller is funded by the Biotechnology and Biological Sciences Research Council, The Royal Society, The John Oldacre Foundation, The Ambrose and Ann Appelbe Trust and a HEROBC Innovation Fellowship funded by HEFCE.

Barbara Whiteman | alfa

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>