Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects’ survival, mating decrease with age in wild, researchers discover

28.11.2002


Researchers examine aging in wild insects for first time


Antler flies (Protopiophila litigata) on a moose antler with an observation grid drawn on the antler surface.
Credit: Russell Bonduriansky, U of T


Mating pair of antler flies (Protopiophila litigata) Credit: R. Bonduriansky



A unique insect has given researchers the opportunity to study aging in the wild for the first time.

"Aging - or senescence - has been seen under controlled conditions in the lab, but never before in insects living in their naturally evolved habitat," says U of T zoology doctoral candidate Russell Bonduriansky. "Our study of antler flies shows these animals do age in the wild."


Bonduriansky and co-researcher Chad Brassil, both of the evolutionary ecology group at U of T, studied male antler flies to see if there was aging - a term used to denote a deterioration of the body’s vital functions, not chronological time. The two zoologists examined the flies to see if their abilities to survive to the next day and to mate deteriorated with age. The study appears in the Nov. 28 issue of Nature.

"We found that the flies deteriorate over their lives. As they get chronologically older, their chances of dying by the next day increase," says Bonduriansky. "While their probability of death increased, their probability of mating decreased. A decrease in both survival and reproduction unambiguously demonstrates aging."

An important feature of the study was the flies’ natural environment, says Brassil. "When you study flies in the lab, they live for a long time because they don’t have any predators or risks. Eventually, however, they do start to deteriorate. Now we have shown that this deterioration also occurs in the wild."

In Ontario’s Algonquin Park, the researchers studied several hundred antler flies, an insect that breeds exclusively on the discarded antlers of moose and deer. The insects’ relatively small geographical domain enabled the team to mark and track the progress of individual flies throughout their lives. "We had a small number of moose antlers in the field so we knew we were looking at the whole system. We were able to follow the flies throughout their lives - a very rare occurrence in nature where insects characteristically cover a lot of ground," says Brassil.

To follow the flies, the researchers captured the 2-mm-long flies and hand-painted identification codes on their backs before releasing them. "You can actually see these codes from about 20 or 30 cm away, so it is possible to recognize individuals," says Bonduriansky. Over the course of 2 ½ months, the researchers followed the marked flies and created biographies for each individual, monitoring their life spans and mating success.

"Evolutionary theorists argue that it is very unlikely that we can ever actually reverse aging or stop it," says Bonduriansky. "But the unique ecology of the antler fly can at least help us to understand why we age."

Lanna Crucefix is an assistant news services officer with the department of public affairs.

CONTACT:

Russell Bonduriansky, U of T Zoology, ph: (416) 946-7217; email: russell.bonduriansky@utoronto.ca

Chad Brassil, U of T Zoology, ph: (416) 946-7217; email: brassil@zoo.utoronto.ca


U of T Public Affairs, ph: (416) 978-0260; email: lanna.crucefix@utoronto.ca

Lanna Crucefix | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin3/021127b.asp

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>