Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects’ survival, mating decrease with age in wild, researchers discover

28.11.2002


Researchers examine aging in wild insects for first time


Antler flies (Protopiophila litigata) on a moose antler with an observation grid drawn on the antler surface.
Credit: Russell Bonduriansky, U of T


Mating pair of antler flies (Protopiophila litigata) Credit: R. Bonduriansky



A unique insect has given researchers the opportunity to study aging in the wild for the first time.

"Aging - or senescence - has been seen under controlled conditions in the lab, but never before in insects living in their naturally evolved habitat," says U of T zoology doctoral candidate Russell Bonduriansky. "Our study of antler flies shows these animals do age in the wild."


Bonduriansky and co-researcher Chad Brassil, both of the evolutionary ecology group at U of T, studied male antler flies to see if there was aging - a term used to denote a deterioration of the body’s vital functions, not chronological time. The two zoologists examined the flies to see if their abilities to survive to the next day and to mate deteriorated with age. The study appears in the Nov. 28 issue of Nature.

"We found that the flies deteriorate over their lives. As they get chronologically older, their chances of dying by the next day increase," says Bonduriansky. "While their probability of death increased, their probability of mating decreased. A decrease in both survival and reproduction unambiguously demonstrates aging."

An important feature of the study was the flies’ natural environment, says Brassil. "When you study flies in the lab, they live for a long time because they don’t have any predators or risks. Eventually, however, they do start to deteriorate. Now we have shown that this deterioration also occurs in the wild."

In Ontario’s Algonquin Park, the researchers studied several hundred antler flies, an insect that breeds exclusively on the discarded antlers of moose and deer. The insects’ relatively small geographical domain enabled the team to mark and track the progress of individual flies throughout their lives. "We had a small number of moose antlers in the field so we knew we were looking at the whole system. We were able to follow the flies throughout their lives - a very rare occurrence in nature where insects characteristically cover a lot of ground," says Brassil.

To follow the flies, the researchers captured the 2-mm-long flies and hand-painted identification codes on their backs before releasing them. "You can actually see these codes from about 20 or 30 cm away, so it is possible to recognize individuals," says Bonduriansky. Over the course of 2 ½ months, the researchers followed the marked flies and created biographies for each individual, monitoring their life spans and mating success.

"Evolutionary theorists argue that it is very unlikely that we can ever actually reverse aging or stop it," says Bonduriansky. "But the unique ecology of the antler fly can at least help us to understand why we age."

Lanna Crucefix is an assistant news services officer with the department of public affairs.

CONTACT:

Russell Bonduriansky, U of T Zoology, ph: (416) 946-7217; email: russell.bonduriansky@utoronto.ca

Chad Brassil, U of T Zoology, ph: (416) 946-7217; email: brassil@zoo.utoronto.ca


U of T Public Affairs, ph: (416) 978-0260; email: lanna.crucefix@utoronto.ca

Lanna Crucefix | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin3/021127b.asp

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>