Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects’ survival, mating decrease with age in wild, researchers discover

28.11.2002


Researchers examine aging in wild insects for first time


Antler flies (Protopiophila litigata) on a moose antler with an observation grid drawn on the antler surface.
Credit: Russell Bonduriansky, U of T


Mating pair of antler flies (Protopiophila litigata) Credit: R. Bonduriansky



A unique insect has given researchers the opportunity to study aging in the wild for the first time.

"Aging - or senescence - has been seen under controlled conditions in the lab, but never before in insects living in their naturally evolved habitat," says U of T zoology doctoral candidate Russell Bonduriansky. "Our study of antler flies shows these animals do age in the wild."


Bonduriansky and co-researcher Chad Brassil, both of the evolutionary ecology group at U of T, studied male antler flies to see if there was aging - a term used to denote a deterioration of the body’s vital functions, not chronological time. The two zoologists examined the flies to see if their abilities to survive to the next day and to mate deteriorated with age. The study appears in the Nov. 28 issue of Nature.

"We found that the flies deteriorate over their lives. As they get chronologically older, their chances of dying by the next day increase," says Bonduriansky. "While their probability of death increased, their probability of mating decreased. A decrease in both survival and reproduction unambiguously demonstrates aging."

An important feature of the study was the flies’ natural environment, says Brassil. "When you study flies in the lab, they live for a long time because they don’t have any predators or risks. Eventually, however, they do start to deteriorate. Now we have shown that this deterioration also occurs in the wild."

In Ontario’s Algonquin Park, the researchers studied several hundred antler flies, an insect that breeds exclusively on the discarded antlers of moose and deer. The insects’ relatively small geographical domain enabled the team to mark and track the progress of individual flies throughout their lives. "We had a small number of moose antlers in the field so we knew we were looking at the whole system. We were able to follow the flies throughout their lives - a very rare occurrence in nature where insects characteristically cover a lot of ground," says Brassil.

To follow the flies, the researchers captured the 2-mm-long flies and hand-painted identification codes on their backs before releasing them. "You can actually see these codes from about 20 or 30 cm away, so it is possible to recognize individuals," says Bonduriansky. Over the course of 2 ½ months, the researchers followed the marked flies and created biographies for each individual, monitoring their life spans and mating success.

"Evolutionary theorists argue that it is very unlikely that we can ever actually reverse aging or stop it," says Bonduriansky. "But the unique ecology of the antler fly can at least help us to understand why we age."

Lanna Crucefix is an assistant news services officer with the department of public affairs.

CONTACT:

Russell Bonduriansky, U of T Zoology, ph: (416) 946-7217; email: russell.bonduriansky@utoronto.ca

Chad Brassil, U of T Zoology, ph: (416) 946-7217; email: brassil@zoo.utoronto.ca


U of T Public Affairs, ph: (416) 978-0260; email: lanna.crucefix@utoronto.ca

Lanna Crucefix | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin3/021127b.asp

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>