Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foxd3 gene allows stem cells to remain stem cells

15.10.2002


Foxd3 joins the small, but growing list of stem cell regulating genes



In the search to understand the nature of stem cells, researchers at the University of Pennsylvania School of Medicine have identified a regulatory gene that is crucial in maintaining a stem cell’s ability to self-renew. According to their findings, the Foxd3 gene is a required factor for pluripotency – the ability of stem cells to turn into different types of tissue – in the mammalian embryo. Their research is presented in the October 15th issue of the journal Genes and Development.

"Stem cells represent a unique tissue type with great potential for disease therapy, but if we are to use stem cells then we ought to know the basis of their abilities," said Patricia Labosky, PhD, an Assistant Professor in the Department of Cell and Developmental Biology. "Among the stem cell regulatory genes, it appears that Foxd3 gene expression keeps stem cells from quickly differentiating – that is, developing into different types of tissue – holding back the process so that an embryo will have enough stem cells to continue developing normally."


To study the function of the Foxd3 gene, Labosky and her colleagues generated mice with an inactivating mutation in the gene, and then analyzed those mice to determine the role of the Foxd3 protein.

Foxd3-deficient embryos do not survive very long. While part of the yolk sac forms, the inner cell mass that contains all the cells that make up the body of the developing embryos fails to expand enough to produce the embryo and some of the supportive tissues. Without Foxd3, the mouse embryos simply could not maintain enough stem cells to survive a crucial point in their development.

"Our findings implicate Foxd3 as one of the few genes serving as a ’master switch’ of the developing embryo," said Labosky. "These genes determine the fate of cells by turning on or off other genes in response to signals in the embryo."

Foxd3 joins previously identified genes, such as Oct4, Fgf4, and Sox2, which control the pluripotency of embryonic stem cells in the early stages of embryogenesis. In their experiments, Labosky and her colleagues found that these genes are still expressed despite the lack of Foxd3. This suggests Foxd3 functions either downstream of Oct4, Fgf4 and Sox2, or along a parallel pathway.

The researchers determined that normal embryonic development can be restored by adding non-mutant embryonic stem cells to the Foxd3-mutant embryos, indicating that Foxd3 acts in the inner cell mass and its derivatives. According to Labosky, Foxd3 is a key regulator of mammalian stem cells, with a clear counterpart in humans. Foxd3 gene expression is a diagnostic characteristic of human embryonic stem cells, suggesting that the gene may function in a similar fashion in mouse and human cells.

"If we are to take advantage of stem cells as a clinical therapeutic, then it is absolutely vital to identify the key regulatory genes such as Foxd3 that control the process of cell differentiation," said Labosky. "Once we understand how these genes function we are that much closer to being able to mold stem cells to meet our needs."

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>