Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maize’s starch pathway found limited

24.09.2002


In the first look at the molecular diversity of the starch pathway in maize, research at North Carolina State University has found that - in contrast to the high amount of diversity in many of the maize genes previously studied - there is a general dearth of diversity in this particular pathway.



That’s important, says Dr. Ed Buckler, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) researcher, assistant professor of genetics at NC State and one of the study’s lead researchers, because molecular diversity essentially provides scientists and plant breeders the raw materials to make the crop better.

"Starch is the main product of maize, and is one of the pathways we want to change the most," Buckler says. "People want to use corn for sweeteners, ethanol production and processed food needs. But some of the genes in the starch pathway cannot be manipulated any more by normal breeding."


Buckler and colleagues at NC State and the University of California, Irvine, publish their findings in the Oct. 1 issue of Proceedings of the National Academy of Sciences. The online version of the paper was released on Sept. 20.

In an interesting side note to the research on diversity in maize’s starch pathway, the team also conclusively identified the single nucleotide - or structural unit of a nucleic acid - responsible for the production of sweet corn in the United States. Previous research by Dr. Martha James at Iowa State University had narrowed the possibilities down to two nucleotides, according to Buckler. Sweet corn was one of the first mutations discovered in the field of genetics; that discovery occurred about 100 years ago, Buckler says.

"Currently, the identification of the U.S. sweet corn mutation is of historical and basic research interest, but in the future it could help lead to a sweet corn with a good balance of
sweetness, creaminess and germination ability," Buckler said.

Buckler says limited diversity in starch and perhaps other, yet-to-be-studied maize pathways make it harder for plant breeders to increase yields of the popular crop. Therefore, to further increase yields, diversity of these important pathways must also be increased.

He adds that there are essentially three ways to solve the problem of low diversity in maize’s starch pathway: crossing maize with pollen from its wild relative, teosinte; searching for and extracting important genetic material from Latin or South American maize; or using transgenics, or genetic engineering.

Each possibility’s rewards come with risks, however. Teosinte’s yield is not very high, so crossing it with maize would not be immediately useful; searching for diversity in "foreign" maize may not yield the necessary genetic diversity to improve U.S. maize; and genetic engineering is often met with resistance, especially from consumers.

In the paper, Buckler and his colleagues suggest an alternative. "One efficient method may be to take alleles, or genetic variants, from selected genomic regions or genes in teosinte, which has lots of diversity, and incorporate them into maize," Buckler says. This type of work has been done with the tomato and has yielded positive results, he adds.

Buckler’s research is supported by the National Science Foundation and the USDA-ARS.

Mick Kulikowski | NCSU

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>