Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Maize’s starch pathway found limited


In the first look at the molecular diversity of the starch pathway in maize, research at North Carolina State University has found that - in contrast to the high amount of diversity in many of the maize genes previously studied - there is a general dearth of diversity in this particular pathway.

That’s important, says Dr. Ed Buckler, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) researcher, assistant professor of genetics at NC State and one of the study’s lead researchers, because molecular diversity essentially provides scientists and plant breeders the raw materials to make the crop better.

"Starch is the main product of maize, and is one of the pathways we want to change the most," Buckler says. "People want to use corn for sweeteners, ethanol production and processed food needs. But some of the genes in the starch pathway cannot be manipulated any more by normal breeding."

Buckler and colleagues at NC State and the University of California, Irvine, publish their findings in the Oct. 1 issue of Proceedings of the National Academy of Sciences. The online version of the paper was released on Sept. 20.

In an interesting side note to the research on diversity in maize’s starch pathway, the team also conclusively identified the single nucleotide - or structural unit of a nucleic acid - responsible for the production of sweet corn in the United States. Previous research by Dr. Martha James at Iowa State University had narrowed the possibilities down to two nucleotides, according to Buckler. Sweet corn was one of the first mutations discovered in the field of genetics; that discovery occurred about 100 years ago, Buckler says.

"Currently, the identification of the U.S. sweet corn mutation is of historical and basic research interest, but in the future it could help lead to a sweet corn with a good balance of
sweetness, creaminess and germination ability," Buckler said.

Buckler says limited diversity in starch and perhaps other, yet-to-be-studied maize pathways make it harder for plant breeders to increase yields of the popular crop. Therefore, to further increase yields, diversity of these important pathways must also be increased.

He adds that there are essentially three ways to solve the problem of low diversity in maize’s starch pathway: crossing maize with pollen from its wild relative, teosinte; searching for and extracting important genetic material from Latin or South American maize; or using transgenics, or genetic engineering.

Each possibility’s rewards come with risks, however. Teosinte’s yield is not very high, so crossing it with maize would not be immediately useful; searching for diversity in "foreign" maize may not yield the necessary genetic diversity to improve U.S. maize; and genetic engineering is often met with resistance, especially from consumers.

In the paper, Buckler and his colleagues suggest an alternative. "One efficient method may be to take alleles, or genetic variants, from selected genomic regions or genes in teosinte, which has lots of diversity, and incorporate them into maize," Buckler says. This type of work has been done with the tomato and has yielded positive results, he adds.

Buckler’s research is supported by the National Science Foundation and the USDA-ARS.

Mick Kulikowski | NCSU

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>