Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Essential cell division ’zipper’ anchors to so-called junk DNA

29.08.2002


Mechanism may provide insights into development and cancer



When cells divide in two, they must carefully manage the process by which their DNA is replicated and then apportioned to the daughter cells. In one critical step along the way, the replicated DNA strands - or sisters - are held together for a period by a temporary scaffold of bridging proteins. When the timing is right, the proteins unzip, allowing the DNA sisters to separate. Errors in this or other steps in cell division can lead to cell death, faulty development, or cancer, which is largely defined as misregulated cell division.

Scientists have had a number of questions about these important bridging proteins, called cohesins. For example, how and where do the proteins attach themselves to the DNA? To protect genes from inappropriate activation, DNA is tightly wrapped around small proteins called histones and then further coiled into a higher structure called chromatin that serves as an effective accessibility barrier to the genes.


In a new study in the August 29 issue of Nature, researchers at The Wistar Institute identify a cohesin-containing protein complex that reshapes chromatin to allow cohesins to bind to DNA. In doing so, they also identified the locations on the human genome where the cohesins bind. Somewhat to their surprise, the binding sites were found to be a repetitive DNA sequence found throughout the human genome for which no previous role had ever been identified. These bits of DNA, known as Alu sequences, are liberally represented along those vast stretches of the human genome not known to directly control genetic activity, sometimes referred to as junk DNA.

"One thing that interested us is that there are 500 thousand to 1 million Alu repeats across the human genome," says Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the Nature study. "These sequences are very common. And this makes sense if one of their roles is to bind to the bridging proteins, the cohesins, to keep the replicated DNA sisters together until it is time for them to separate. Multiple bridging sites throughout the DNA would be needed for this system to work. They couldn’t be unique sequences."

In their investigations, Shiekhattar and his coworkers noticed that many, but not all the Alu sequences bound cohesin, and they wondered what rules might govern the process. Additional experiments revealed that if the histone proteins were methylated and acetylated - that is, if a methyl and acetyl molecule were bound to them - then the chromatin structure relaxed to allow access to the DNA. But if the Alu sequence on the DNA was itself methylated, then the cohesin could not bind to the DNA at that site.

Why these modifications might take place at some Alu sites and not others was not clear. But, taken together, the research team’s observations are supportive of the existence of what some scientists have termed a "histone code." This recently proposed theory suggests that a system of complex, interdependent modifications to histones is responsible for regulating access to DNA and genes.

"The idea that a kind of code of modifications to the molecular packaging of DNA may govern gene activity is an intriguing one," Shiekhattar says. "If we were to better understand this code, it might provide us with important insights into diseases tied to problems in gene control, including developmental disorders and cancer. These are some of the questions we’re looking into now, using this study as a starting point."

Franklin Hoke | EurekAlert!

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>