Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Essential cell division ’zipper’ anchors to so-called junk DNA


Mechanism may provide insights into development and cancer

When cells divide in two, they must carefully manage the process by which their DNA is replicated and then apportioned to the daughter cells. In one critical step along the way, the replicated DNA strands - or sisters - are held together for a period by a temporary scaffold of bridging proteins. When the timing is right, the proteins unzip, allowing the DNA sisters to separate. Errors in this or other steps in cell division can lead to cell death, faulty development, or cancer, which is largely defined as misregulated cell division.

Scientists have had a number of questions about these important bridging proteins, called cohesins. For example, how and where do the proteins attach themselves to the DNA? To protect genes from inappropriate activation, DNA is tightly wrapped around small proteins called histones and then further coiled into a higher structure called chromatin that serves as an effective accessibility barrier to the genes.

In a new study in the August 29 issue of Nature, researchers at The Wistar Institute identify a cohesin-containing protein complex that reshapes chromatin to allow cohesins to bind to DNA. In doing so, they also identified the locations on the human genome where the cohesins bind. Somewhat to their surprise, the binding sites were found to be a repetitive DNA sequence found throughout the human genome for which no previous role had ever been identified. These bits of DNA, known as Alu sequences, are liberally represented along those vast stretches of the human genome not known to directly control genetic activity, sometimes referred to as junk DNA.

"One thing that interested us is that there are 500 thousand to 1 million Alu repeats across the human genome," says Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the Nature study. "These sequences are very common. And this makes sense if one of their roles is to bind to the bridging proteins, the cohesins, to keep the replicated DNA sisters together until it is time for them to separate. Multiple bridging sites throughout the DNA would be needed for this system to work. They couldn’t be unique sequences."

In their investigations, Shiekhattar and his coworkers noticed that many, but not all the Alu sequences bound cohesin, and they wondered what rules might govern the process. Additional experiments revealed that if the histone proteins were methylated and acetylated - that is, if a methyl and acetyl molecule were bound to them - then the chromatin structure relaxed to allow access to the DNA. But if the Alu sequence on the DNA was itself methylated, then the cohesin could not bind to the DNA at that site.

Why these modifications might take place at some Alu sites and not others was not clear. But, taken together, the research team’s observations are supportive of the existence of what some scientists have termed a "histone code." This recently proposed theory suggests that a system of complex, interdependent modifications to histones is responsible for regulating access to DNA and genes.

"The idea that a kind of code of modifications to the molecular packaging of DNA may govern gene activity is an intriguing one," Shiekhattar says. "If we were to better understand this code, it might provide us with important insights into diseases tied to problems in gene control, including developmental disorders and cancer. These are some of the questions we’re looking into now, using this study as a starting point."

Franklin Hoke | EurekAlert!

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>