Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Essential cell division ’zipper’ anchors to so-called junk DNA

29.08.2002


Mechanism may provide insights into development and cancer



When cells divide in two, they must carefully manage the process by which their DNA is replicated and then apportioned to the daughter cells. In one critical step along the way, the replicated DNA strands - or sisters - are held together for a period by a temporary scaffold of bridging proteins. When the timing is right, the proteins unzip, allowing the DNA sisters to separate. Errors in this or other steps in cell division can lead to cell death, faulty development, or cancer, which is largely defined as misregulated cell division.

Scientists have had a number of questions about these important bridging proteins, called cohesins. For example, how and where do the proteins attach themselves to the DNA? To protect genes from inappropriate activation, DNA is tightly wrapped around small proteins called histones and then further coiled into a higher structure called chromatin that serves as an effective accessibility barrier to the genes.


In a new study in the August 29 issue of Nature, researchers at The Wistar Institute identify a cohesin-containing protein complex that reshapes chromatin to allow cohesins to bind to DNA. In doing so, they also identified the locations on the human genome where the cohesins bind. Somewhat to their surprise, the binding sites were found to be a repetitive DNA sequence found throughout the human genome for which no previous role had ever been identified. These bits of DNA, known as Alu sequences, are liberally represented along those vast stretches of the human genome not known to directly control genetic activity, sometimes referred to as junk DNA.

"One thing that interested us is that there are 500 thousand to 1 million Alu repeats across the human genome," says Ramin Shiekhattar, Ph.D., an associate professor at The Wistar Institute and senior author on the Nature study. "These sequences are very common. And this makes sense if one of their roles is to bind to the bridging proteins, the cohesins, to keep the replicated DNA sisters together until it is time for them to separate. Multiple bridging sites throughout the DNA would be needed for this system to work. They couldn’t be unique sequences."

In their investigations, Shiekhattar and his coworkers noticed that many, but not all the Alu sequences bound cohesin, and they wondered what rules might govern the process. Additional experiments revealed that if the histone proteins were methylated and acetylated - that is, if a methyl and acetyl molecule were bound to them - then the chromatin structure relaxed to allow access to the DNA. But if the Alu sequence on the DNA was itself methylated, then the cohesin could not bind to the DNA at that site.

Why these modifications might take place at some Alu sites and not others was not clear. But, taken together, the research team’s observations are supportive of the existence of what some scientists have termed a "histone code." This recently proposed theory suggests that a system of complex, interdependent modifications to histones is responsible for regulating access to DNA and genes.

"The idea that a kind of code of modifications to the molecular packaging of DNA may govern gene activity is an intriguing one," Shiekhattar says. "If we were to better understand this code, it might provide us with important insights into diseases tied to problems in gene control, including developmental disorders and cancer. These are some of the questions we’re looking into now, using this study as a starting point."

Franklin Hoke | EurekAlert!

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>