Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pythons can be couch potatoes, too

26.08.2002


UCI researchers find that consumption of certain food types cause the constricting reptile to expend excessive energy in digestion



Gary Larson, creator of "The Far Side," is noted for morphing animal scientific attributes into human behavior in his comic strips. Consider the sketch of a family of pythons lying about after Thanksgiving dinner. The snakes that consumed a mouse, some chicken and glucose are ready to go out and play football shortly after dining. But the pythons that indulged on the starchy foods cannot budge from the couch, still trying to digest their meal.

A scene from a Larson cartoon? Perhaps. But it is also a notion based in scientific fact.


A team of UC Irvine researchers has found that pythons use significantly more energy to digest proteins than they do carbohydrates, revealing that metabolic rates needed for digestion are based on the content of the food instead of the volume. The findings also provide more information on understanding how other animals - and humans - metabolize food and the importance of their diet.

Marshall McCue, Albert Bennett and James Hicks, researchers in the Department of Ecology and Evolutionary Biology at UCI, will present these findings at the American Physiological Society intersociety meeting on Tuesday, Aug. 27, in San Diego, Calif. The researchers tested pythons to determine the reptiles’ specific dynamic action (SDA), which is the metabolic increment associated with a python’s digestion, assimilation and excretion of specific foods. SDA is determined not by how much a python eats, but what it eats. Moreover, the energy required for a certain level of SDA accounts for a large energy expenditure that may reduce the energy available for other activities. The researchers used pythons because their metabolic rates vary drastically from when they are at rest, to when they are digesting.

Hatchling Burmese pythons were raised in the laboratory on a diet of mice and rats for four months prior to experiments. The pythons were then fed various meals of proteins, carbohydrates and lipids. Protein meals consisted of lean chicken breast meat, casein, collagen and gelatin. Carbohydrate meals included two complex (wheat starch, cellulose) and two simple carbohydrates (D-glucose, sucrose). Lipid meals consisted of lard and beef suet. Meal volumes were varied and feeding treatments were randomly assigned to each individual python.

The post feeding metabolic responses for each of the 11 experimental meals were combined and compared with their standard metabolic rate.

The key findings from this experiment were:


Mean masses of eight pythons before and after experiment did not change significantly.

Mouse, chicken, casein, collagen, glucose and sucrose meals induced an SDA response; gelatin, suet, lard, cellulose and starch did not induce SDA.

SDA responses induced by meals with the largest and smallest volumes were not statistically different;
intermediate meals induced the greatest SDA.

Gelatin appeared to be assimilated but did not cause a significant SDA response.

Collagen caused an SDA response; however it was always completely regurgitated several days following ingestion.

Protein meals that induced the greatest SDA (casein, mouse, and chicken breast) were also those highest in essential amino acids.

The results revealed that single and dual element sugars caused the pythons’ metabolic rate to increase two-fold. However, complex carbohydrates were unable to elicit a significant metabolic response and were not assimilated by the snakes. Protein meals caused variable SDA responses that appeared to be related to the amino acid composition of the specific meals. Casein caused a four-fold increase in metabolism, while gelatin caused no detectible changes and was not assimilated. Various lipid meals did not cause any significant change in oxygen consumption and were generally not assimilated.

The findings suggest that a large serving of one particular type of food probably does not trigger the large SDA increment well known in this species. The researchers’ next steps are to investigate SDA induced by specific amino acids and amino acid mixtures and digestive assimilation efficiency of meals that induce SDA.

Essentially, pythons are governed by physiological principles that encourage consumption of specific foods to optimize their metabolic rate and to allow energy expenditure for activities other than digestion.

Tom Vasich | EurekAlert!
Further information:
http://www.the-aps.org/publications/journals/tphys/2002html/Aug02/compmtg/online_program.pdf
http://www.the-aps.org/meetings/aps/san_diego/home.htm
http://www.today.uci.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>