Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pythons can be couch potatoes, too

26.08.2002


UCI researchers find that consumption of certain food types cause the constricting reptile to expend excessive energy in digestion



Gary Larson, creator of "The Far Side," is noted for morphing animal scientific attributes into human behavior in his comic strips. Consider the sketch of a family of pythons lying about after Thanksgiving dinner. The snakes that consumed a mouse, some chicken and glucose are ready to go out and play football shortly after dining. But the pythons that indulged on the starchy foods cannot budge from the couch, still trying to digest their meal.

A scene from a Larson cartoon? Perhaps. But it is also a notion based in scientific fact.


A team of UC Irvine researchers has found that pythons use significantly more energy to digest proteins than they do carbohydrates, revealing that metabolic rates needed for digestion are based on the content of the food instead of the volume. The findings also provide more information on understanding how other animals - and humans - metabolize food and the importance of their diet.

Marshall McCue, Albert Bennett and James Hicks, researchers in the Department of Ecology and Evolutionary Biology at UCI, will present these findings at the American Physiological Society intersociety meeting on Tuesday, Aug. 27, in San Diego, Calif. The researchers tested pythons to determine the reptiles’ specific dynamic action (SDA), which is the metabolic increment associated with a python’s digestion, assimilation and excretion of specific foods. SDA is determined not by how much a python eats, but what it eats. Moreover, the energy required for a certain level of SDA accounts for a large energy expenditure that may reduce the energy available for other activities. The researchers used pythons because their metabolic rates vary drastically from when they are at rest, to when they are digesting.

Hatchling Burmese pythons were raised in the laboratory on a diet of mice and rats for four months prior to experiments. The pythons were then fed various meals of proteins, carbohydrates and lipids. Protein meals consisted of lean chicken breast meat, casein, collagen and gelatin. Carbohydrate meals included two complex (wheat starch, cellulose) and two simple carbohydrates (D-glucose, sucrose). Lipid meals consisted of lard and beef suet. Meal volumes were varied and feeding treatments were randomly assigned to each individual python.

The post feeding metabolic responses for each of the 11 experimental meals were combined and compared with their standard metabolic rate.

The key findings from this experiment were:


Mean masses of eight pythons before and after experiment did not change significantly.

Mouse, chicken, casein, collagen, glucose and sucrose meals induced an SDA response; gelatin, suet, lard, cellulose and starch did not induce SDA.

SDA responses induced by meals with the largest and smallest volumes were not statistically different;
intermediate meals induced the greatest SDA.

Gelatin appeared to be assimilated but did not cause a significant SDA response.

Collagen caused an SDA response; however it was always completely regurgitated several days following ingestion.

Protein meals that induced the greatest SDA (casein, mouse, and chicken breast) were also those highest in essential amino acids.

The results revealed that single and dual element sugars caused the pythons’ metabolic rate to increase two-fold. However, complex carbohydrates were unable to elicit a significant metabolic response and were not assimilated by the snakes. Protein meals caused variable SDA responses that appeared to be related to the amino acid composition of the specific meals. Casein caused a four-fold increase in metabolism, while gelatin caused no detectible changes and was not assimilated. Various lipid meals did not cause any significant change in oxygen consumption and were generally not assimilated.

The findings suggest that a large serving of one particular type of food probably does not trigger the large SDA increment well known in this species. The researchers’ next steps are to investigate SDA induced by specific amino acids and amino acid mixtures and digestive assimilation efficiency of meals that induce SDA.

Essentially, pythons are governed by physiological principles that encourage consumption of specific foods to optimize their metabolic rate and to allow energy expenditure for activities other than digestion.

Tom Vasich | EurekAlert!
Further information:
http://www.the-aps.org/publications/journals/tphys/2002html/Aug02/compmtg/online_program.pdf
http://www.the-aps.org/meetings/aps/san_diego/home.htm
http://www.today.uci.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>