Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making sense of the human genome: researchers characterize a crucial family of signaling proteins in the human genome


In this month’s Genome Biology, Mitch Kostich and colleagues from the Schering-Plough Research Institute (NJ, USA) have identified and mapped an important group of molecules known as protein kinases. These molecules are central to the communication of information both within and between cells, in a process known as cell signaling. Defective protein kinases are associated with hundreds of human diseases, including some types of cancer, and it is hoped that this map, which shows the relationships between 510 human protein kinases, will help researchers find new drugs that can specifically target diseases caused by a defective protein kinase, as well as unlocking the secrets of 60 previously unidentified members of this family.

If our bodies are to work properly, it is important that cells are doing the right thing at the right time. To get things right, the human body has evolved complex signaling pathways that allow our molecules to communicate with each other. Protein kinases are a central part of many signaling pathways, helping to regulate virtually every function in human cells. They belong to a class of biological molecules known as enzymes, which help all the chemical reactions in our bodies to go according to plan. All protein kinases carry out the same function: they transfer a cluster of atoms, known as a phosphoryl group between different molecules. The movement of a phosphoryl group is similar to the flick of a switch that causes a biochemical pathway go slower or faster.

Kostich and his colleagues searched the publicly available sequence databases to find sequences with similarity to known protein kinase molecules. After removals of duplicates and pseudogenes (genes that are not used), they found 510 sequences that were similar to known protein kinases, of which 60 were previously unidentified. Confident that all 510 sequences coded for protein kinases, they constructed a tree-like diagram known as a phenogram, which maps the relationship between different protein kinases based on the differences in their sequence. This phenogram shows that there are five distinct protein kinase families, a result that is consistent with classification systems based on the functions of different protein kinases.

Understanding the relationships between different members of the protein kinase family in humans will provide researchers with important information to unravel the connections been the structure of a protein kinase and its function. The comprehensive nature of the study will also aid researchers in the design of drugs to help those suffering from disease involving defects in cell signaling. In addition, the study has uncovered 60 new protein kinases for which functions have yet to be assigned.

Gordon Fletcher | BioMed Central
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>