Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making sense of the human genome: researchers characterize a crucial family of signaling proteins in the human genome

23.08.2002


In this month’s Genome Biology, Mitch Kostich and colleagues from the Schering-Plough Research Institute (NJ, USA) have identified and mapped an important group of molecules known as protein kinases. These molecules are central to the communication of information both within and between cells, in a process known as cell signaling. Defective protein kinases are associated with hundreds of human diseases, including some types of cancer, and it is hoped that this map, which shows the relationships between 510 human protein kinases, will help researchers find new drugs that can specifically target diseases caused by a defective protein kinase, as well as unlocking the secrets of 60 previously unidentified members of this family.



If our bodies are to work properly, it is important that cells are doing the right thing at the right time. To get things right, the human body has evolved complex signaling pathways that allow our molecules to communicate with each other. Protein kinases are a central part of many signaling pathways, helping to regulate virtually every function in human cells. They belong to a class of biological molecules known as enzymes, which help all the chemical reactions in our bodies to go according to plan. All protein kinases carry out the same function: they transfer a cluster of atoms, known as a phosphoryl group between different molecules. The movement of a phosphoryl group is similar to the flick of a switch that causes a biochemical pathway go slower or faster.

Kostich and his colleagues searched the publicly available sequence databases to find sequences with similarity to known protein kinase molecules. After removals of duplicates and pseudogenes (genes that are not used), they found 510 sequences that were similar to known protein kinases, of which 60 were previously unidentified. Confident that all 510 sequences coded for protein kinases, they constructed a tree-like diagram known as a phenogram, which maps the relationship between different protein kinases based on the differences in their sequence. This phenogram shows that there are five distinct protein kinase families, a result that is consistent with classification systems based on the functions of different protein kinases.


Understanding the relationships between different members of the protein kinase family in humans will provide researchers with important information to unravel the connections been the structure of a protein kinase and its function. The comprehensive nature of the study will also aid researchers in the design of drugs to help those suffering from disease involving defects in cell signaling. In addition, the study has uncovered 60 new protein kinases for which functions have yet to be assigned.

Gordon Fletcher | BioMed Central
Further information:
http://genomebiology.com/mkt/151/2002/3/9/research/0043
http://genomebiology.com/2002/3/9/research/0043

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>