Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making sense of the human genome: researchers characterize a crucial family of signaling proteins in the human genome

23.08.2002


In this month’s Genome Biology, Mitch Kostich and colleagues from the Schering-Plough Research Institute (NJ, USA) have identified and mapped an important group of molecules known as protein kinases. These molecules are central to the communication of information both within and between cells, in a process known as cell signaling. Defective protein kinases are associated with hundreds of human diseases, including some types of cancer, and it is hoped that this map, which shows the relationships between 510 human protein kinases, will help researchers find new drugs that can specifically target diseases caused by a defective protein kinase, as well as unlocking the secrets of 60 previously unidentified members of this family.



If our bodies are to work properly, it is important that cells are doing the right thing at the right time. To get things right, the human body has evolved complex signaling pathways that allow our molecules to communicate with each other. Protein kinases are a central part of many signaling pathways, helping to regulate virtually every function in human cells. They belong to a class of biological molecules known as enzymes, which help all the chemical reactions in our bodies to go according to plan. All protein kinases carry out the same function: they transfer a cluster of atoms, known as a phosphoryl group between different molecules. The movement of a phosphoryl group is similar to the flick of a switch that causes a biochemical pathway go slower or faster.

Kostich and his colleagues searched the publicly available sequence databases to find sequences with similarity to known protein kinase molecules. After removals of duplicates and pseudogenes (genes that are not used), they found 510 sequences that were similar to known protein kinases, of which 60 were previously unidentified. Confident that all 510 sequences coded for protein kinases, they constructed a tree-like diagram known as a phenogram, which maps the relationship between different protein kinases based on the differences in their sequence. This phenogram shows that there are five distinct protein kinase families, a result that is consistent with classification systems based on the functions of different protein kinases.


Understanding the relationships between different members of the protein kinase family in humans will provide researchers with important information to unravel the connections been the structure of a protein kinase and its function. The comprehensive nature of the study will also aid researchers in the design of drugs to help those suffering from disease involving defects in cell signaling. In addition, the study has uncovered 60 new protein kinases for which functions have yet to be assigned.

Gordon Fletcher | BioMed Central
Further information:
http://genomebiology.com/mkt/151/2002/3/9/research/0043
http://genomebiology.com/2002/3/9/research/0043

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>