Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Regulating human X chromosomes doesn’t use same gene as in mouse


A gene thought to keep a single X chromosome turned on in mice plays no such role in humans, Johns Hopkins researchers report in the August issue of the American Journal of Human Genetics.

The finding is likely to relegate the disproven gene to relative obscurity, at least in humans, says Barbara Migeon, M.D., of the McKusick-Nathans Institute of Genetic Medicine, whose laboratory found the human version of the gene in 2001. It also moves the search for the gene from the X chromosome to the 22 other types of chromosomes found in human cells, she adds.

In mammals, one of the two X chromosomes inherited by all females is turned off during development to prevent a dangerous double dose of proteins. A gene called Xist unquestionably turns off X chromosomes in mice, humans and other mammals. Because every cell needs one active X chromosome, Xist must be suppressed on one X in both females and males (which have an X and a Y chromosome). Which gene (or genes) does this is still in question, says Migeon.

In mice, researchers elsewhere pointed to the Tsix gene, because it suppressed Xist and was itself expressed only on the active X. However, studying cells from various human developmental stages, Migeon and her team discovered that human Tsix is expressed only on the inactive X chromosome, right alongside Xist. The two continue to be expressed together until after birth, when for reasons unknown Tsix gradually disappears.

"The difference is striking," says Migeon, also a professor of pediatrics. "In mice, researchers have suggested that Tsix was the gene in mammals that suppresses Xist and allows an X chromosome to remain active, but we’ve shown clearly that it does not do this in humans."

Migeon suggests instead that the mouse Tsix is involved in imprinting, a way cells determine which of two gene copies to use to make proteins that depends only on which parent the copy came from. In mice, X-inactivation in the placenta is imprinted -- the X from the mother is always "on." In other embryonic tissues, however, inactivation occurs randomly -- the X from either the mother or father could be on. In humans, X-inactivation is random for all tissues, including the placenta.

"Human and mouse Tsix are very different from one another," says Migeon. "Sequence differences and missing regions in human Tsix are a window on what’s happening in the mouse and help explain why the gene doesn’t have the same function in humans."

Much remains unknown about human Tsix, including what, if anything, it does in humans. However, Migeon will leave those mysteries for others to investigate, choosing instead to continue a 30-year quest to fully understand X-inactivation in human development.

"We expect to find a gene on one of the other chromosomes that turns off Xist in a random fashion," says Migeon. "It is difficult to envision how a gene on the X chromosome could, by itself, regulate the function of Xist on only one member of the X chromosome pair."

To track down Xist’s true suppressor, Migeon and her colleagues are studying human cells with "trisomies" -- cells that have 23 pairs of chromosomes plus a third copy of one chromosome. In these cells, if the Xist-suppressing gene is on the chromosome with three copies, X-inactivation would be abnormal, Migeon says.

The studies were funded by the National Institutes of Health. Authors on the study are Migeon, Catherine Lee, Ashis Chowdhury and Heather Carpenter, all of Johns Hopkins.

Joanna Downer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>