Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regulating human X chromosomes doesn’t use same gene as in mouse

01.08.2002


A gene thought to keep a single X chromosome turned on in mice plays no such role in humans, Johns Hopkins researchers report in the August issue of the American Journal of Human Genetics.



The finding is likely to relegate the disproven gene to relative obscurity, at least in humans, says Barbara Migeon, M.D., of the McKusick-Nathans Institute of Genetic Medicine, whose laboratory found the human version of the gene in 2001. It also moves the search for the gene from the X chromosome to the 22 other types of chromosomes found in human cells, she adds.

In mammals, one of the two X chromosomes inherited by all females is turned off during development to prevent a dangerous double dose of proteins. A gene called Xist unquestionably turns off X chromosomes in mice, humans and other mammals. Because every cell needs one active X chromosome, Xist must be suppressed on one X in both females and males (which have an X and a Y chromosome). Which gene (or genes) does this is still in question, says Migeon.


In mice, researchers elsewhere pointed to the Tsix gene, because it suppressed Xist and was itself expressed only on the active X. However, studying cells from various human developmental stages, Migeon and her team discovered that human Tsix is expressed only on the inactive X chromosome, right alongside Xist. The two continue to be expressed together until after birth, when for reasons unknown Tsix gradually disappears.

"The difference is striking," says Migeon, also a professor of pediatrics. "In mice, researchers have suggested that Tsix was the gene in mammals that suppresses Xist and allows an X chromosome to remain active, but we’ve shown clearly that it does not do this in humans."

Migeon suggests instead that the mouse Tsix is involved in imprinting, a way cells determine which of two gene copies to use to make proteins that depends only on which parent the copy came from. In mice, X-inactivation in the placenta is imprinted -- the X from the mother is always "on." In other embryonic tissues, however, inactivation occurs randomly -- the X from either the mother or father could be on. In humans, X-inactivation is random for all tissues, including the placenta.

"Human and mouse Tsix are very different from one another," says Migeon. "Sequence differences and missing regions in human Tsix are a window on what’s happening in the mouse and help explain why the gene doesn’t have the same function in humans."

Much remains unknown about human Tsix, including what, if anything, it does in humans. However, Migeon will leave those mysteries for others to investigate, choosing instead to continue a 30-year quest to fully understand X-inactivation in human development.

"We expect to find a gene on one of the other chromosomes that turns off Xist in a random fashion," says Migeon. "It is difficult to envision how a gene on the X chromosome could, by itself, regulate the function of Xist on only one member of the X chromosome pair."

To track down Xist’s true suppressor, Migeon and her colleagues are studying human cells with "trisomies" -- cells that have 23 pairs of chromosomes plus a third copy of one chromosome. In these cells, if the Xist-suppressing gene is on the chromosome with three copies, X-inactivation would be abnormal, Migeon says.


The studies were funded by the National Institutes of Health. Authors on the study are Migeon, Catherine Lee, Ashis Chowdhury and Heather Carpenter, all of Johns Hopkins.

Joanna Downer | EurekAlert!
Further information:
http://www.journals.uchicago.edu/AJHG/journal/issues/v71n2/024004/024004.web.pdf
http://www.hopkinsmedicine.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>