Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Generating genetic diversity in the nervous system

01.08.2002


Scientists from Baylor College of Medicine (Texas, USA) and the Wellcome Trust Sanger Institute (Cambridge, UK) have deciphered how neurons can synthesize a diverse range of proteins from a relatively limited number of genes – a discovery with important implications for understanding how complex neural circuitry is formed and maintained throughout our lives.



A long-standing question in neurobiology is how each of the tens of thousands of neurons that populate the mammalian brain are instructed to establish the specific connections that give rise to our complex neural networks. Researchers postulate that the expression of distinct sets of proteins in each individual neuron act as molecular cues to direct the course of each neuron’s fate. The protocadherin (Pcdh) family of proteins are prime candidates for this job, as each individual neuron expresses an overlapping but distinct combination of Pcdh proteins.

In the August 1 issue of Genes & Development, Dr. Allan Bradley and colleagues report on their identification of the mechanism of neuron-specific Pcdh expression. The Pcdh family of proteins is encoded by three gene clusters (Pcdh-a, Pcdh-ß, and Pcdh-g) on human chromosome #5, and mouse chromosome #18. The a and g clusters each contain genes with several variable exons (coding regions of DNA). Each variable exon can be separately joined to a constant region of the gene, thereby creating the genetic blueprint for a Pcdh protein that will have a unique variable region and a common constant region.


Dr. Bradley and colleagues have discovered that that although the Pcdh gene clusters share a similar genomic structure to the immunoglobin genes in the immune system -- where antibody protein diversity confers antigen-binding specificity -- the neuron-specific expression of Pcdh proteins is accomplished by an entirely different mechanism.

As Dr. Bradley explains, "We tested the various models by creating mice with a variety of modified alleles. The most intriguing theory was recombination (like the immunoglobulin genes), but we found no evidence to support this! Rather it appears that diversity is predominately generated using alternative promoters and cis-alternative splicing with a low level of trans-splicing."

The researchers found that each variable exon is under the regulatory control of its own promoter (a DNA sequence where RNA polymerase binds to initiate transcription of the gene into pre-mRNA). Once transcribed, the pre-mRNA transcript then predominantly undergoes an intramolecular reaction, known as "cis-splicing," whereby a variable exon is cut out and joined, or "spliced," to the constant region of that same pre-mRNA transcript. Ultimately, this process enables a neuron to manipulate the Pcdh gene structure to generate a number of mRNAs, each containing different variable regions, which will each be translated into a unique Pcdh protein.

This work establishes that through the use of multiple promoters and cis-splicing, individual neurons are able to express distinct combinations of Pcdh genes, and, in turn, proteins. Further work will delineate how the differential expression of Pcdh proteins may underlie the specificity of neural connectivity.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>