Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria Precipitate Gold

29.07.2002


Roman A. Amosov and a team of Russian scientists from the Central Institute for Geological Exploration of Non-ferrous and Noble Metals, Institute of Paleontology, Russian Academy of Sciences, and from the Institute of Microbiology, Russian Academy of Sciences, led by, have managed to simulate in the laboratory the process of precipitation of gold which in the natural geothermal wells is promoted by blue-green algae (cyanobacteriae).



For the purposes of the experiment Vladimir Orleanski of the Institute of Microbiology, grew cyanobacteriae in the medium containing high percentage of gold chloride (from 200-300 mg up to 500 mg per milliliter). Each day Vladimir Orleanski would alternate the above medium with a regular one, which did not contain gold chloride. This way the microbiologist simulated the environment of the pulsatory thermal wells located in the geological break-up areas. The matter is that such wells regularly discharge from the lower crust the hot solutions rich in chlorides of noble metals. The microbiologist has achieved a remarkable result - in the course of the experiment gold was precipitating on the surface and inside the cells of cyanobacteriae.

It is worth noting that precipitation of gold from chloride solutions takes place only in the daylight, the process ceasing in the dark. Precipitation of gold appears to be a previously unknown photochemical process. Evidently, biological molecules serve as catalysts in the process. For half a year the scientists continued to grow the blue-green algae in the medium containing gold chloride. The algae colonies obtained this way had an evidently expressed laminated structure, where regular sections alternated with auriferous ones. Spectroscopic analysis of dried up cyanobacteriae has proved that they contain gold in the form of oxide. The way the microorganisms oxidise gold is still unclear, since noble metals are extremely difficult to oxidise.


The microorganisms` remnants are rather frequently found in the ores of non-ferrous metals, bauxites, phosphorites and other raw materials. The scientists have repeatedly made the assumptions that bacteria play a certain role in the formation of raw materials, including non-ferrous metal deposits. When R. A. Amosov found the remnants of blue-green algae in the gold mined from the Vorontsovo deposit in the Urals, this finding prompted him the hypothesis that the cyanobacterae were able to precipitate gold from geothermal solutions. As a result, R. A. Amosov has come to the idea of simulating this process in the laboratory.

The environment of a natural geothermal well can be simulated via the replacement of regular medium by the medium with high content of ions of gold and via the reverse replacement. However, the concentration of gold in the course of the experiment significantly exceeded its concentration in a natural geothermal well. Nevertheless, it should be acknowledged that it takes thousands of years for the deposit to be formed in the natural environment, while in the experiment gold was precipitated within half a year only.

Now the scientists have got solid experimental proof of the hypothesis that some gold deposits are of biological origin (at least, the Vorontsovo deposit is). The researchers also believe that it may be possible to get gold from thermal wells with the help of microorganisms.

Alexander Ermakov | alfa

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>