Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer pulses help characterize special surfaces

30.07.2008
Detecting deadly fumes in subways, toxic gases in chemical spills, and hidden explosives in baggage is becoming easier and more efficient with a measurement technique called surface-enhanced Raman scattering. To further improve the technique’s sensitivity, scientists must design better scattering surfaces, and more effective ways of evaluating them

Researchers at the University of Illinois, led by chemistry professor Dana Dlott, have devised a method to evaluate substrate surfaces by using a series of killer laser pulses.

They describe the method and report measurements for a commonly used substrate in the July 18 issue of the journal Science.

Surface-enhanced Raman scattering, which functions by adsorbing molecules of interest onto rough metal surfaces, typically enhances the Raman spectrum a million times. Hot spots can occur, however, where the electric field enhancement can be a billion or more.

... more about:
»Dlott »Enhancement »Laser »Raman »Substrate »technique

Current surface characterization techniques cannot tell hot spots from cold spots, and create an average value across the entire substrate surface.

“Looking at a spectrum, you can’t tell if it’s the result of a small number of molecules in hot spots or a large number of molecules in cold spots,” Dlott said. “Two materials could have the same average spectrum, but behave quite differently.”

Dlott, graduate student Ying Fang and postdoctoral research associate Nak-Hyun Seong came up with a way to measure the distribution of site enhancements on the substrate surface. Using killer laser pulses, their technique can count how many molecules are sitting in the hottest spots, how many are sitting in the coldest spots, and how many are sitting between the two extremes.

The killer pulse is a short duration laser pulse with a variable electric field. When the electric field is strong enough, it rips a molecule apart, “killing” it.

“If a molecule is in a very hot spot on the substrate, where the electric field enhancement is really big, it takes only a weak pulse to kill it,” Dlott said. “If the molecule is in a very cold spot, then it takes a really big laser pulse to kill it.”

Dlott, Fang and Seong demonstrated their technique by measuring the distribution of local enhancements for benzenethiolate molecules on a substrate of silver-coated nanospheres 330 nanometers in diameter.

To characterize the surface, the researchers first measured the initial Raman intensity. Then they put in a weak killer pulse, which destroyed the molecules in the hottest spots. After measuring the new Raman intensity, they put in a bigger pulse and destroyed the molecules in slightly colder spots. The researchers continued with bigger and bigger pulses until all the benzenethiolate molecules were destroyed.

“We found the hottest spots comprised just 63 molecules per million, but contributed 24 percent of the overall Raman intensity,” Dlott said. “We also found the coldest spots contained 61 percent of the molecules, but contributed only 4 percent of the overall intensity.”

Measurements like these, of the distribution of local site enhancements, will help researchers design better scattering surfaces for sensor applications.

Prior to this work, no one knew if the Raman intensity was dominated by a small number of hot molecules or a large number of cold ones. Dlott, Fang and Seong have answered that important scientific question; not just with a yes or no, but with a full determination of exactly how many molecules there are in each level of hot or cold.

“Now, when evaluating a new surface-enhanced Raman material, instead of knowing just the average intensity, we know the highest, the lowest, and everything in between,” Dlott said.

Funding was provided by the National Science Foundation, the Air Force Office of Scientific Research, and the Army Research Office. Electron microscopy was carried out in the university’s Center for Microanalysis of Materials, which is supported by the U.S. Department of Energy.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu.

Further reports about: Dlott Enhancement Laser Raman Substrate technique

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>