Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer pulses help characterize special surfaces

30.07.2008
Detecting deadly fumes in subways, toxic gases in chemical spills, and hidden explosives in baggage is becoming easier and more efficient with a measurement technique called surface-enhanced Raman scattering. To further improve the technique’s sensitivity, scientists must design better scattering surfaces, and more effective ways of evaluating them

Researchers at the University of Illinois, led by chemistry professor Dana Dlott, have devised a method to evaluate substrate surfaces by using a series of killer laser pulses.

They describe the method and report measurements for a commonly used substrate in the July 18 issue of the journal Science.

Surface-enhanced Raman scattering, which functions by adsorbing molecules of interest onto rough metal surfaces, typically enhances the Raman spectrum a million times. Hot spots can occur, however, where the electric field enhancement can be a billion or more.

... more about:
»Dlott »Enhancement »Laser »Raman »Substrate »technique

Current surface characterization techniques cannot tell hot spots from cold spots, and create an average value across the entire substrate surface.

“Looking at a spectrum, you can’t tell if it’s the result of a small number of molecules in hot spots or a large number of molecules in cold spots,” Dlott said. “Two materials could have the same average spectrum, but behave quite differently.”

Dlott, graduate student Ying Fang and postdoctoral research associate Nak-Hyun Seong came up with a way to measure the distribution of site enhancements on the substrate surface. Using killer laser pulses, their technique can count how many molecules are sitting in the hottest spots, how many are sitting in the coldest spots, and how many are sitting between the two extremes.

The killer pulse is a short duration laser pulse with a variable electric field. When the electric field is strong enough, it rips a molecule apart, “killing” it.

“If a molecule is in a very hot spot on the substrate, where the electric field enhancement is really big, it takes only a weak pulse to kill it,” Dlott said. “If the molecule is in a very cold spot, then it takes a really big laser pulse to kill it.”

Dlott, Fang and Seong demonstrated their technique by measuring the distribution of local enhancements for benzenethiolate molecules on a substrate of silver-coated nanospheres 330 nanometers in diameter.

To characterize the surface, the researchers first measured the initial Raman intensity. Then they put in a weak killer pulse, which destroyed the molecules in the hottest spots. After measuring the new Raman intensity, they put in a bigger pulse and destroyed the molecules in slightly colder spots. The researchers continued with bigger and bigger pulses until all the benzenethiolate molecules were destroyed.

“We found the hottest spots comprised just 63 molecules per million, but contributed 24 percent of the overall Raman intensity,” Dlott said. “We also found the coldest spots contained 61 percent of the molecules, but contributed only 4 percent of the overall intensity.”

Measurements like these, of the distribution of local site enhancements, will help researchers design better scattering surfaces for sensor applications.

Prior to this work, no one knew if the Raman intensity was dominated by a small number of hot molecules or a large number of cold ones. Dlott, Fang and Seong have answered that important scientific question; not just with a yes or no, but with a full determination of exactly how many molecules there are in each level of hot or cold.

“Now, when evaluating a new surface-enhanced Raman material, instead of knowing just the average intensity, we know the highest, the lowest, and everything in between,” Dlott said.

Funding was provided by the National Science Foundation, the Air Force Office of Scientific Research, and the Army Research Office. Electron microscopy was carried out in the university’s Center for Microanalysis of Materials, which is supported by the U.S. Department of Energy.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu.

Further reports about: Dlott Enhancement Laser Raman Substrate technique

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>