Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer pulses help characterize special surfaces

30.07.2008
Detecting deadly fumes in subways, toxic gases in chemical spills, and hidden explosives in baggage is becoming easier and more efficient with a measurement technique called surface-enhanced Raman scattering. To further improve the technique’s sensitivity, scientists must design better scattering surfaces, and more effective ways of evaluating them

Researchers at the University of Illinois, led by chemistry professor Dana Dlott, have devised a method to evaluate substrate surfaces by using a series of killer laser pulses.

They describe the method and report measurements for a commonly used substrate in the July 18 issue of the journal Science.

Surface-enhanced Raman scattering, which functions by adsorbing molecules of interest onto rough metal surfaces, typically enhances the Raman spectrum a million times. Hot spots can occur, however, where the electric field enhancement can be a billion or more.

... more about:
»Dlott »Enhancement »Laser »Raman »Substrate »technique

Current surface characterization techniques cannot tell hot spots from cold spots, and create an average value across the entire substrate surface.

“Looking at a spectrum, you can’t tell if it’s the result of a small number of molecules in hot spots or a large number of molecules in cold spots,” Dlott said. “Two materials could have the same average spectrum, but behave quite differently.”

Dlott, graduate student Ying Fang and postdoctoral research associate Nak-Hyun Seong came up with a way to measure the distribution of site enhancements on the substrate surface. Using killer laser pulses, their technique can count how many molecules are sitting in the hottest spots, how many are sitting in the coldest spots, and how many are sitting between the two extremes.

The killer pulse is a short duration laser pulse with a variable electric field. When the electric field is strong enough, it rips a molecule apart, “killing” it.

“If a molecule is in a very hot spot on the substrate, where the electric field enhancement is really big, it takes only a weak pulse to kill it,” Dlott said. “If the molecule is in a very cold spot, then it takes a really big laser pulse to kill it.”

Dlott, Fang and Seong demonstrated their technique by measuring the distribution of local enhancements for benzenethiolate molecules on a substrate of silver-coated nanospheres 330 nanometers in diameter.

To characterize the surface, the researchers first measured the initial Raman intensity. Then they put in a weak killer pulse, which destroyed the molecules in the hottest spots. After measuring the new Raman intensity, they put in a bigger pulse and destroyed the molecules in slightly colder spots. The researchers continued with bigger and bigger pulses until all the benzenethiolate molecules were destroyed.

“We found the hottest spots comprised just 63 molecules per million, but contributed 24 percent of the overall Raman intensity,” Dlott said. “We also found the coldest spots contained 61 percent of the molecules, but contributed only 4 percent of the overall intensity.”

Measurements like these, of the distribution of local site enhancements, will help researchers design better scattering surfaces for sensor applications.

Prior to this work, no one knew if the Raman intensity was dominated by a small number of hot molecules or a large number of cold ones. Dlott, Fang and Seong have answered that important scientific question; not just with a yes or no, but with a full determination of exactly how many molecules there are in each level of hot or cold.

“Now, when evaluating a new surface-enhanced Raman material, instead of knowing just the average intensity, we know the highest, the lowest, and everything in between,” Dlott said.

Funding was provided by the National Science Foundation, the Air Force Office of Scientific Research, and the Army Research Office. Electron microscopy was carried out in the university’s Center for Microanalysis of Materials, which is supported by the U.S. Department of Energy.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu.

Further reports about: Dlott Enhancement Laser Raman Substrate technique

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>