Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It takes nerves for flies to keep a level head

22.07.2008
The nerve connections that keep a fly’s gaze stable during complex aerial manoeuvres, enabling it to respond quickly to obstacles in its flight path, are revealed in new detail in research published today (22 July 2008).

Scientists from Imperial College London have described the connections between two key sets of nerve cells in a fly’s brain that help it process what it sees and fast-track that information to its muscles. This helps it stay agile and respond quickly to its environment while on the move.

The study, published in the journal PLoS Biology, is an important step towards understanding how nervous systems operate, and could help us improve our knowledge of more complex animals. It could also be used to improve technical control systems in autonomous air vehicles - robots that stay stable in the air without crashing and with no need for remote control.

Just as goalkeepers need to keep their heads level when flying through the air for a save, no matter how they tilt their bodies, so flies need to keep their gaze steady during their slightly more complicated areal manoeuvres. This enables them to process visual information about their surrounding environment more efficiently and modify their movements accordingly.

... more about:
»Nerve »movement

The new research shows that the way in which two populations of nerve cells, or neurons, communicate with each other is the key. The lobula plate tangential cells receive input from the eyes. This generates small electrical signals that inform the fly about how it is turning and moving during its aerial stunts.

The signals pass on to a second set of neurons that connect to the neck muscles, and stabilise the fly’s head and thus its line of sight.

Lead researcher, Dr Holger Krapp, from Imperial’s Department of Bioengineering says the pathway from visual signal to head movement is ingeniously designed: it uses information from both eyes, is direct, and does not require heavy computing power. He continues:

“Anyone who has watched one fly chasing another at incredibly high speed, without crashing or bumping into anything, can appreciate the high-end flight performance of these animals.

“They manage even though they see the world in poor definition: their version of the world is like a heavily pixelated photo compared with human vision. However, they do have one major advantage. They can update and process visual information more than ten times faster than humans, which is vital for an insect that relies on fast sensory feedback to maintain its agility.”

Dr Krapp adds: “Keeping the head level and gaze steady is a fundamental task for all animals that rely on vision to help control their movements. Understanding the underlying principles in simple model systems like flies could give us useful leads on how more complex creatures achieve similar tasks.”

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk
http://biology.plosjournals.org/perlserv/?request=index-html&issn=1545-7885

Further reports about: Nerve movement

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>