Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimic molecules to protect against plague

08.07.2008
Bacteria that cause pneumonic plague can evade our first-line defences, making it difficult for the body to fight infection. In fact, a signature of the plague is the lack of an inflammatory response.

Now, scientists have discovered a way to protect against death following infection with plague bacteria, by using molecules that can mimic the pathogens. According to research published in the July issue of Microbiology, these molecules make antibiotics more effective and can even be used to protect against other diseases.

The plague, caused by Yersinia pestis, has killed an estimated 200 million people worldwide. Although treatments have improved, it remains a threat to public health. It can be transmitted from human to human in aerosols and is therefore listed as a Category A bioterrorism agent.

"Yersinia pestis is successful in causing disease in mammals because it can dampen the normal non-specific immune response to infection," said Dr Scott Minnich from the University of Idaho, USA. "We found an intranasal therapy that stimulates the innate immune response and protects against pneumonic plague."

... more about:
»Lipid »Minnich »Yersinia »antibiotic »immune »pestis »pneumonic

Following infection, lipid A (which is part of the bacterial surface) binds to receptors on our immune cells, triggering an immune response. Yersinia pestis circumvents this, stopping our cells from taking action. Molecules have been developed that mimic lipid A, eliciting a strong immune response that can prevent death in infected animals. Dr Minnich and his colleagues studied the effect of a nasal spray containing two such molecules, CRX-524 and CRX-527, on mice infected with Yersinia pestis.

"Treatment with synthetic modified lipid A molecules can directly protect animals against pneumonic plague infections," said Dr Minnich. "We also found that stimulating innate immunity using this nasal spray enhanced conventional antibiotic therapy. When it is given along with antibiotics, fewer doses and less antibiotic protects against pneumonic plague."

The results of this study suggest that synthetic modified lipid A compounds may provide a new therapeutic tool against plague infection. In a control group that did not receive the treatment, only 23% of mice survived for 3 days. When given the mimic molecules, up to 93% of mice survived for 3 days, 70% for 4 days and 34% recovered completely. This highlights the importance of the non-specific, first-line immune defences during the critical early phase of infection. Stimulating this response can over-ride a microorganism's counter measures to evade or disable the immune response.

Other studies have shown related therapeutic compounds are also effective against influenza and Listeria monocytogenes. "This work is still at a very basic animal model testing stage with regards to plague," said Dr Minnich. "What is exciting is that these studies provide insight into bacterial/host interactions in the disease process and promise new strategies to combat a variety of infectious agents."

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: Lipid Minnich Yersinia antibiotic immune pestis pneumonic

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>