Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Process Brings Nanoparticles Into Focus

25.06.2008
Scientists can study the biological impacts of engineered nanomaterials on cells within the body with greater resolution than ever because of a procedure developed by researchers at the Department of Energy’s Oak Ridge National Laboratory.

The method, detailed in the current issue of Nature Nanotechnology, uses scanning near-field ultrasonic holography to clearly see nanoparticles residing within cells of laboratory mice that had inhaled single-walled carbon nanohorns. Nanohorns are short, horn-shaped tubular structures capped with a conical tip.

“While carbon-based materials have countless potential uses, we need to know how they interact within a cell – and whether they are able to penetrate cells,” said Laurene Tetard, lead author and a member of ORNL’s Biosciences Division. “We found that these nanohorns can indeed get into cells.”

With this new tool, researchers will be able to determine whether a cell’s shape changes because of nanomaterials such as the nanohorns used for this study. Tetard and co-authors expect this work to be of significant benefit to scientists studying drug delivery systems, nanotoxicology and interactions between engineered nanomaterials and biological systems.

“The rising commercial use of engineered nanoparticles and the ensuing need for large-scale production pose a risk of unintended human exposure that may impact health,” the authors wrote. “Central to this issue is the ability to determine the fate of nanoparticles in biological systems and in more details their route after inhalation.”

In contrast to conventional imaging techniques, scanning near-field ultrasonic holography provides a detailed look inside a cell, providing nanometer resolution.

“Conventional atomic force microscopy using a cantilever tip can only probe the surface of a specimen, making it difficult to analyze structures that are inside a cell,” Tetard said. “Our method benefits from all of the advantages of a standard atomic force microscope but provides access to some of the features buried inside the cell.”

Ultimately, this new imaging capability could help advance the field of nanoparticles-cell interactions. In addition to the high-resolution subsurface imaging and localization of nanoparticles in biological samples, scanning near-field ultrasonic holography allows for minimal sample preparation and requires no labeling with radioisotopes. The technique also offers relatively high throughput sample analysis, which enables researchers to image many cells quickly.

“The scanning near-field ultrasonic holography method should be especially useful for determining the efficacy of cell type-specific drug targeting, which is a critical goal for medical uses of nanomaterial,” wrote the authors, who expect their results to help resolve critical questions about the fate and potential toxicity of nanoparticles within the body.

Co-authors of the paper, titled “Imaging nanoparticles in cells by nanomechanical holography,” are Ali Passian, Katherine Venmar, Rachel Lynch, Brynn Voy and Thomas Thundat of ORNL and Gajendra Shekhawat and Vinayak Dravid of Northwestern University. Researchers at ORNL’s Center for Nanophase Materials Sciences provided nanohorns for this work.

Funding was provided by the Department of Energy Office of Science, Biological and Environmental Research and by the Laboratory Directed Research and Development program. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | newswise
Further information:
http://www.ornl.gov/news
http://www.ornl.gov/ORNLReview/

Further reports about: Nanomaterial Ultrasonic holography nanohorns nanoparticles near-field

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>