Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could new discovery about a shape-shifting protein lead to a mighty 'morpheein' bacteria fighter?

24.06.2008
A small molecule that locks an essential enzyme in an inactive form could one day form the basis of a new class of unbeatable, species-specific antibiotics, according to researchers at Fox Chase Cancer Center.

Their findings, highlighted on the cover of the June 23 issue of the journal Chemistry & Biology, take advantage of an emerging body of science regarding "morpheeins" – proteins made from individual components that are capable of spontaneously reconfiguring themselves into different shapes within living cells.

The researchers discovered a small molecule, which they have named morphlock-1, binds the inactive form of a protein known as porphobilinogen synthase (PBGS), an enzyme used by nearly all forms of cellular life. The functioning form of PBGS is built from eight identical component parts – in what is called an octamer configuration – and is essential among nearly all forms of life in the processes that enable cells to use energy. The other configuration is made of six parts – or a hexamer configuration – and serves as a "standby" mode for the protein.

"As the name suggests, morphlock-1 essentially locks the hexamer configuration into place, preventing its protein subunits from reconfiguring into the active assembly," says lead investigator Eileen Jaffe, Ph.D, a Senior Member of Fox Chase. "Targeting morpheeins in their inactive assemblies provides an entirely new approach to drug discovery."

... more about:
»Jaffe »PBGS »Protein »bacteria »enzyme »hexamer »morpheein »morphlock-1

While their study was performed using a pea plant-version of PBGS, the researchers have reason to believe the principle could apply to bacterial versions of PBGS as well. "Using morphlock-1 as a base, we are seeking to fine tune the molecule so that it blocks just the bacterial version of the PBGS enzyme, " Jaffe says.

"Because PBGS is so crucial for life, the part of the enzyme where chemistry happens is highly conserved through evolution," Jaffe says, meaning that an all-around PBGS-inhibiting drug would harm bacteria, peas and people alike. The area where the potential drug binds to the hexamer form of the protein, however, has been found to differ among species, depending how far the organisms have evolved from each other.

When PBGS is in its inactive hexamer form, there is a small cavity on the surface of the assembled complex. Using computer docking techniques, Jaffe and her Fox Chase colleagues identified a suite of small molecules predicted to bind to this cavity.

The researchers then bought and tested a selection of these molecules in the lab to see if any of them stabilized the pea PBGS in its hexamer assembly. One inhibitor in particular, given the name morphlock-1, potently drove the formation of the hexamer in pea PBGS, but not in that of humans, fruit flies, or the infectious bacteria Pseudomonas aeruginosa, or Vibrio cholerae, the latter of which causes cholera. Morphlock-1 is a potent inhibitor of pea PBGS, but not of the PBGS from these other organisms.

Jaffe coined the term "morpheein" in 2005 after a study of the structure of PBGS revealed its shape-shifting tendencies. While initially met with skepticism because the existence of morpheeins contradicts some classic concepts about protein structure and function, subsequent studies have reinforced that PBGS (and perhaps other proteins) exhibits this behavior. According to Jaffe, this study is the first to make use of alternate morpheein shapes as a potential strategy for drug discovery, in general, particularly for antibiotics.

"Multi-drug resistance drives the need for developing new antibiotics," Jaffe says. "Since drugs that stabilize the inactive PBGS hexamer need not be chemically similar to each other, it will be difficult for the bacterium to develop complete resistance to a cocktail of such compounds."

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Jaffe PBGS Protein bacteria enzyme hexamer morpheein morphlock-1

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>