Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI researchers discover new cellular mechanism that will significantly advance vaccine development

19.06.2008
Discovery rewrites current scientific understanding of how the body responds to viruses

La Jolla Institute for Allergy & Immunology (LIAI) scientists have discovered one for the textbooks. Their finding, reported Friday in the scientific journal Immunity, illuminates a new, previously unknown mechanism in how the body fights a virus. The finding runs counter to traditional scientific understanding of this process and will provide scientists a more effective method for developing vaccines.

"Our research grew from the question, "why do you get good antibody responses to some parts of (virus) pathogens and poor responses to other parts?" said LIAI scientist Shane Crotty, Ph.D., the lead researcher on the paper, "Selective CD4 T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities." Alessandro Sette, Ph.D., a renowned vaccine expert and director of the LIAI Center for Infectious Disease, also was a key contributor on the study. Dr. Crotty said the team studied the smallpox vaccine, considered the "gold standard" of vaccines, and found some startling answers.

"We expected one thing based on textbook knowledge and that didn't happen at all," he said. It was known previously that getting a good antibody response requires two different cells of the immune system -- B cells and CD4 T cells, both soldiers in the immune system's defensive army. Antibody responses are important because they help the body fight off viruses and they also are key to vaccine development. Surprisingly, however, Dr. Crotty said the researchers found that B cells and CD4 T cells recognize the same piece of the virus.

... more about:
»Antibody »B cells »CD4 »Crotty »LIAI »T cells »Vaccine

"Previously, it was thought that the CD4 T cell could react to any part of the virus, but now we realize it must be specific to the same part as the B cell," he explained. "When you have a hundred different parts, this knowledge makes a big difference. It narrows down the search for the right antigens tremendously."

Scientists use knowledge of which antigens (virus pieces) trigger an antibody attack to develop vaccines. Vaccines work by exposing the individual to a milder form of a particular virus, so that the body makes antibodies to fight off the virus. Consequently, if the individual is later exposed to the actual virus, the body already has an army of antibodies built up that can fight off this stronger viral attack before it can overtake the body and cause sickness.

With the knowledge gained from the LIAI study, scientists will now be able to more easily figure out the most important viral pieces to focus on in developing a vaccine. "The fact that it requires two components to fight the (virus) pathogen is important to understand," Dr. Crotty said. "So now when we find out which viral pieces are producing a strong response from the B cells, we can cross check that against the viral pieces eliciting a good response from the CD4 T cells. The point at which these virus pieces cross - in other words where the same piece is eliciting a response from both the B cells and CD4 T cells - then we know we have found our best candidate for creating a vaccine."

About LIAI
Founded in 1988, the La Jolla Institute for Allergy & Immunology is a nonprofit medical research center dedicated to increasing knowledge and improving human health through studies of the immune system. Scientists at the institute carry out research searching for cures for cancer, allergy and asthma, infectious diseases, and autoimmune diseases such as diabetes, inflammatory bowel disease and arthritis. LIAI's research staff includes more than 100 Ph.Ds.

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org/pages/news-releases-6-16-2008

Further reports about: Antibody B cells CD4 Crotty LIAI T cells Vaccine

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>