Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on octopuses sheds light on how brain stores and recalls memory

17.06.2008
Research on octopuses has shed new light on how our brains store and recall memory, says Dr. Benny Hochner of the Department of Neurobiology at the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem.

Why octopuses?

Octopuses and other related creatures, known as cephalopods, are considered to be the most intelligent invertebrates because they have relatively large brains and they can be trained for various learning and memory tasks, says Dr. Hochner.

Their behavior repertoire and learning and memory abilities are even comparable in their complexity to those of advanced vertebrates. However, they are still invertebrate mollusks with brains that contain a much fewer number of nerve cells and much simpler anatomical organization than that of vertebrate brains. This unique constellation was utilized to tackle one of the most interesting questions in modern neuroscience, which is how the brain stores and recalls memories

... more about:
»Hochner »LTP »memories »octopus »short-term »vertebrate

In a previous study, Hochner discovered that an area in the octopus brain that was known to be important for learning and memory showed a robust, activity-dependent, long-term synaptic potentiation (LTP) – a process which is strikingly similar to that discovered in vertebrate brains.

This LTP process accelerates the transformation of information between nerve cells by enhancing the transmission of electrical signals through a special structure called the synapse for days and even a lifetime. It is believed that in the area in the brain that stores memories, the synaptic connections between nerve cells that are more active during a specific learning function are strengthened by this activity-induced LTP. One can describe this process as an “engraving of memory traces” in the neuronal networks that store information for a long time, says Hochner.

In a recent article in the journal, Current Biology, Hochner described how he tested these hypotheses and ideas in the brain of the octopus. He blocked the ability of the brain to use LTP during learning by utilizing artificial LTP and though electrical stimulation.

When LTP was blocked with this technique shortly before training for a specific task, the experimental group of octopuses did not remember well the task when tested for long-term memory the day after training. Similar results were obtained when sensory information was prevented from getting into the learning and memory area by lesioning a specific connection in the brain. These findings therefore support the finding that LTP is indeed important for creating memories.

The fact that this was revealed in an invertebrate suggests that this process (LTP) is an efficient mechanism for mediation of learning and memory. The research results in the octopuses also shed new light on how memory systems are organized. Even if one accepts that LTP is important for learning and memory, however, Hochner stresses that further research will be required to understand how this cellular process is utilized in other animal or human brains for storing memories and how these memories are recollected.

The results can also have implications with respect to the organization of learning and memory systems, says Hochner. It is documented that memory processes can be divided into a short-term memory of minutes or a few hours and long-term memory that can store important events and facts for days or even our entire lifetime. Interestingly, notes Hochner, his results show that as in mammals, including humans, the short and long-term memory in the octopus are segregated into two separate systems, each in different locations in the brain.

It is not completely understood how these two systems are interconnected, if at all. However, the organization in the octopus demonstrates a sophistication that was not described yet in other animals. In the octopus, the short-term and long-term systems are working in parallel, but not independently. This is so because the long-term memory area -- in addition to its capacity to store long-term memories -- also regulates the rate at which the short-term memory system acquires short-term memories. This regulatory mechanism is probably useful in cases where faster learning is significant for the octopus’ survival in emergency or risky situations.

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

Further reports about: Hochner LTP memories octopus short-term vertebrate

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>