Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on octopuses sheds light on how brain stores and recalls memory

17.06.2008
Research on octopuses has shed new light on how our brains store and recall memory, says Dr. Benny Hochner of the Department of Neurobiology at the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem.

Why octopuses?

Octopuses and other related creatures, known as cephalopods, are considered to be the most intelligent invertebrates because they have relatively large brains and they can be trained for various learning and memory tasks, says Dr. Hochner.

Their behavior repertoire and learning and memory abilities are even comparable in their complexity to those of advanced vertebrates. However, they are still invertebrate mollusks with brains that contain a much fewer number of nerve cells and much simpler anatomical organization than that of vertebrate brains. This unique constellation was utilized to tackle one of the most interesting questions in modern neuroscience, which is how the brain stores and recalls memories

... more about:
»Hochner »LTP »memories »octopus »short-term »vertebrate

In a previous study, Hochner discovered that an area in the octopus brain that was known to be important for learning and memory showed a robust, activity-dependent, long-term synaptic potentiation (LTP) – a process which is strikingly similar to that discovered in vertebrate brains.

This LTP process accelerates the transformation of information between nerve cells by enhancing the transmission of electrical signals through a special structure called the synapse for days and even a lifetime. It is believed that in the area in the brain that stores memories, the synaptic connections between nerve cells that are more active during a specific learning function are strengthened by this activity-induced LTP. One can describe this process as an “engraving of memory traces” in the neuronal networks that store information for a long time, says Hochner.

In a recent article in the journal, Current Biology, Hochner described how he tested these hypotheses and ideas in the brain of the octopus. He blocked the ability of the brain to use LTP during learning by utilizing artificial LTP and though electrical stimulation.

When LTP was blocked with this technique shortly before training for a specific task, the experimental group of octopuses did not remember well the task when tested for long-term memory the day after training. Similar results were obtained when sensory information was prevented from getting into the learning and memory area by lesioning a specific connection in the brain. These findings therefore support the finding that LTP is indeed important for creating memories.

The fact that this was revealed in an invertebrate suggests that this process (LTP) is an efficient mechanism for mediation of learning and memory. The research results in the octopuses also shed new light on how memory systems are organized. Even if one accepts that LTP is important for learning and memory, however, Hochner stresses that further research will be required to understand how this cellular process is utilized in other animal or human brains for storing memories and how these memories are recollected.

The results can also have implications with respect to the organization of learning and memory systems, says Hochner. It is documented that memory processes can be divided into a short-term memory of minutes or a few hours and long-term memory that can store important events and facts for days or even our entire lifetime. Interestingly, notes Hochner, his results show that as in mammals, including humans, the short and long-term memory in the octopus are segregated into two separate systems, each in different locations in the brain.

It is not completely understood how these two systems are interconnected, if at all. However, the organization in the octopus demonstrates a sophistication that was not described yet in other animals. In the octopus, the short-term and long-term systems are working in parallel, but not independently. This is so because the long-term memory area -- in addition to its capacity to store long-term memories -- also regulates the rate at which the short-term memory system acquires short-term memories. This regulatory mechanism is probably useful in cases where faster learning is significant for the octopus’ survival in emergency or risky situations.

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

Further reports about: Hochner LTP memories octopus short-term vertebrate

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>