Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Addicted' cells provide early cancer diagnosis

11.06.2008
Scientists at the Institute of Food Research have detected subtle changes that may make the bowel more vulnerable to the development of tumours.

With support from the Food Standards Agency and the Biotechnology and Biological Sciences Research Council they are investigating whether diet could control these changes and delay or reverse the onset of cancer.

“We looked at changes in 18 genes that play a role in the very earliest stages of colorectal cancer,” says Professor Ian Johnson at the Institute of Food Research.

“We detected clear chemical differences in these genes in otherwise normal tissue in cancer patients.

... more about:
»DNA »epigenetic »tumour

“This represents a new way to identify defects that could eventually lead to cancer.”

All cells carry a complete set of instructions for the whole organism in their nuclear DNA, but to define the specialised structure and functions of each particular cell type, genes must be switched on or firmly off, over the course of the cell’s life-cycle.

One of the mechanisms controlling the activities of the genes in a cell is the “epigenetic code”, a set of chemical tags attached to the DNA molecule, marking individual genes for expression, or for silence. It is well known that the abnormal behaviour of cancer cells is partly due to mistakes in this epigenetic code, some of which switch on genes for growth, whilst others switch off genes that would otherwise cause abnormal cells to destroy themselves.

Scientists at IFR are exploring the possibility that such mistakes in the epigenetic code may begin to occur in apparently normal tissues, long before the appearance of a tumour.

In the current study published in the British Journal of Cancer they measured the numbers of methyl groups attached to DNA taken from the cells lining the large intestine of bowel cancer patients. They found subtle changes that may make the whole surface of the bowel more vulnerable to the eventual development of tumours by causing the ‘addiction’ of cells to abnormal gene expression.

Some of these changes seem to occur naturally with age, but, supported by the Food Standards Agency, IFR is investigating the possibility that factors in our lifestyle such as diet, obesity and exercise can accelerate or delay DNA methylation as we grow older, thus giving us some degree of control over this vital aspect of our long-term health.

Professor Nigel Brown, Director of Science and Technology at BBSRC said: “Basic research in the relatively young field of epigenetics is already contributing to our understanding of human health. Understanding how epigenetic processes work to maintain healthy cells and tissues is the key to long-term health because, as we see here, the breakdown of these normal processes may subsequently cause disease. BBSRC funds a range of research in the field of epigenetics and has been encouraging networking amongst members of the European epigenetics research community.”

Contacts

Zoe Dunford, Media Manager, Institute of Food Research
t: 01603 255111
m: 07768 164185
e: zoe.dunford@bbsrc.ac.uk
Andy Chapple, Press Office Assistant, Institute of Food Research
t: 01603 251490
m: 07785 766779
e: andrew.chapple@bbsrc.ac.uk

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.bjcancer.com

Further reports about: DNA epigenetic tumour

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>