Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Duke chemist has new way to tell right from left

A Duke University chemist has apparently solved a long-standing frustration in creating certain synthetic molecules that make up drugs, which could lead to better drugs with fewer side effects.

Like human hands, many molecules that make up drugs come in two shapes, right and left. But usually only one of the two versions has the desired effect; the other is at best useless and sometimes even harmful. For example, side effects from the morning sickness drug Thalidomide resulted in profound birth defects because one shape of the molecule was therapeutic and the other was dangerous.

Don Coltart, an assistant professor of chemistry at Duke, appears to have found a way to make synthetic ketone molecules in just one version or the other using a process that is faster, cheaper and less wasteful than the best techniques now available.

And unlike previous attempts to make just one shape of these molecules, a process called asymmetric synthesis, the new method should be able to scaling up to industrial manufacturing quantities.

... more about:
»Molecule »ketone

"Asymmetric synthesis of ketones is not new, but we can do it more practically and easily," said Coltart, who developed the new technique with graduate student Daniel Lim."

Though well-known to the pharmaceutical industry, this problem of molecular handedness in ketones has been difficult to solve. Academic labs have succeeded at asymmetric synthesis over the last two decades, but only by using extreme conditions (e.g. temperatures of -100 degrees Celsius), and costly and time-consuming steps.

Conducted at zero C to -40 C, the new process uses a small molecule called a "chiral auxiliary" to attach pieces to a molecule being built, which causes the new pieces to have the correct handedness. The process is up to 98 percent accurate, Coltart said, and the auxiliary molecules can be easily released and recycled after they've done their work.

"He did something very different," said Samuel Danishefsky of Columbia University and the Memorial Sloan-Kettering Cancer Center, who is Coltart's former post-doctoral mentor. "You could have had a hundred people look at this problem and not see it the way he did. It's a very nice idea."

Coltart said there is a huge need for drug companies to be more selective to make better drugs with fewer side effects, which this new process might help achieve. Pharmaceutical companies might also use the new technique to turn existing formulations of drugs sold as mixtures into a pure form having only the active form of the drug, giving them another seven years of patent protection.

Karl Leif Bates | EurekAlert!
Further information:

Further reports about: Molecule ketone

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>