Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgenic Plants Don't Hurt Beneficial Bugs

05.06.2008
Genetically modified (GM) plants that use Bt (Bacillus thuringiensis), a common soil bacterium, to kill pests won't harm the pests' natural enemies, according to new research by Cornell entomologists.

That is welcome news for ecologists and farmers in the debate over GM plants. Much of the debate surrounding the use of GM crops focuses on their effect on organisms that aren't pests.

The research showed that GM plants expressing Bt insecticidal proteins are not toxic to a parasite that lives inside the caterpillar of the diamondback moth, a devastating worldwide vegetable pest. It was published in the May 27 issue of the online scientific journal PLoS One.

"The conservation of parasites is important for enhancing natural biocontrol that will help suppress pest populations as well as reduce the potential for the pest insects to develop resistance to the Bt," explained Anthony Shelton, Cornell professor of entomology at the New York State Agricultural Experiment Station in Geneva, N.Y., who conducted the study with postdoctoral associate Mao Chen. "Our studies make it clear that Bt plants are a win-win situation to control pest insects and to enhance biocontrol and biodiversity."

... more about:
»Pest »Protein »insecticide »parasite

The Bt bacterium, which is not harmful to humans, has been used for decades as a leaf spray and since 1996, in GM plants, a method that has proven much more effective and is now more widely used. Both uses are approved by the U.S. Environmental Protection Agency. In 2007, Bt corn and cotton plants were grown in 22 countries on 104 million acres, according to Shelton.

"Few studies have examined the effect of Bt plants on parasites of caterpillars, but some of them have reported negative impacts," said Chen, noting that the new research suggests that those negative findings were likely due to testing methods.

To separate out the effect of insecticides and Bt proteins on the caterpillar and parasite, the Cornell researchers isolated and bred strains of caterpillars that were resistant to Bt or a conventional or organic insecticide. Then the caterpillars were parasitized with a wasp that kills the caterpillar in nature.

The resistant caterpillars were then either fed GM plants expressing the Bt protein or non-GM plants sprayed with the Bt protein, conventional insecticides or organic insecticides.

The parasitized caterpillars that ate plants treated with conventional and organic insecticides to which they were resistant, survived and developed into moths because the parasite was killed by the insecticide the caterpillar ingested. However, when the caterpillar fed on the Bt-sprayed plants or Bt plants, the parasite was not affected and killed its host caterpillar when it emerged as an adult wasp, showing that Bt plants are not toxic to the parasite.

Other Cornell researchers involved in the study include Elizabeth Earle and Jun Cao from the Department of Plant Breeding and Genetics and Jian-Zhou Zhao and Hilda Collins from the Department of Entomology. The work was supported by a grant from the USAID Program for Biosafety Systems.

Blaine Friedlander | newswise
Further information:
http://www.cornell.edu

Further reports about: Pest Protein insecticide parasite

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>