Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transgenic Plants Don't Hurt Beneficial Bugs

05.06.2008
Genetically modified (GM) plants that use Bt (Bacillus thuringiensis), a common soil bacterium, to kill pests won't harm the pests' natural enemies, according to new research by Cornell entomologists.

That is welcome news for ecologists and farmers in the debate over GM plants. Much of the debate surrounding the use of GM crops focuses on their effect on organisms that aren't pests.

The research showed that GM plants expressing Bt insecticidal proteins are not toxic to a parasite that lives inside the caterpillar of the diamondback moth, a devastating worldwide vegetable pest. It was published in the May 27 issue of the online scientific journal PLoS One.

"The conservation of parasites is important for enhancing natural biocontrol that will help suppress pest populations as well as reduce the potential for the pest insects to develop resistance to the Bt," explained Anthony Shelton, Cornell professor of entomology at the New York State Agricultural Experiment Station in Geneva, N.Y., who conducted the study with postdoctoral associate Mao Chen. "Our studies make it clear that Bt plants are a win-win situation to control pest insects and to enhance biocontrol and biodiversity."

... more about:
»Pest »Protein »insecticide »parasite

The Bt bacterium, which is not harmful to humans, has been used for decades as a leaf spray and since 1996, in GM plants, a method that has proven much more effective and is now more widely used. Both uses are approved by the U.S. Environmental Protection Agency. In 2007, Bt corn and cotton plants were grown in 22 countries on 104 million acres, according to Shelton.

"Few studies have examined the effect of Bt plants on parasites of caterpillars, but some of them have reported negative impacts," said Chen, noting that the new research suggests that those negative findings were likely due to testing methods.

To separate out the effect of insecticides and Bt proteins on the caterpillar and parasite, the Cornell researchers isolated and bred strains of caterpillars that were resistant to Bt or a conventional or organic insecticide. Then the caterpillars were parasitized with a wasp that kills the caterpillar in nature.

The resistant caterpillars were then either fed GM plants expressing the Bt protein or non-GM plants sprayed with the Bt protein, conventional insecticides or organic insecticides.

The parasitized caterpillars that ate plants treated with conventional and organic insecticides to which they were resistant, survived and developed into moths because the parasite was killed by the insecticide the caterpillar ingested. However, when the caterpillar fed on the Bt-sprayed plants or Bt plants, the parasite was not affected and killed its host caterpillar when it emerged as an adult wasp, showing that Bt plants are not toxic to the parasite.

Other Cornell researchers involved in the study include Elizabeth Earle and Jun Cao from the Department of Plant Breeding and Genetics and Jian-Zhou Zhao and Hilda Collins from the Department of Entomology. The work was supported by a grant from the USAID Program for Biosafety Systems.

Blaine Friedlander | newswise
Further information:
http://www.cornell.edu

Further reports about: Pest Protein insecticide parasite

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>