Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Leiden scientists sequence first female DNA

Geneticists of Leiden University Medical Centre (LUMC) are the first to determine the DNA sequence of a woman. She is also the first European whose DNA sequence has been determined. This has been announced by the researchers this morning, during a special press conference at ‘Bessensap’, a yearly meeting of scientists and the press in the Netherlands.

Following in-depth analysis, the sequence will be made public, except incidental privacy-sensitive findings. The results will contribute to insights into human genetic diversity.

DNA of geneticist Marjolein Kriek
The DNA is that of dr Marjolein Kriek, a clinical geneticist at LUMC. “If anyone could properly consider the ramifications of knowing his or her sequence, it is a clinical geneticist,” says professor Gert-Jan B van Ommen, leader of the LUMC team and director of the ‘Center for Medical Systems Biology’ (CMSB), a center of the Netherlands Genomics Initiative.

Van Ommen continues: “Moreover, while women don’t have a Y-chromosome, they have two X-chromosomes. As the X-chromosome is present as a single copy in half the population, the males, it has undergone a harsher selection in human evolution. This has made it less variable. We considered that sequencing only males, for ‘completeness’, slows insight into X-chromosome varialibity. So it was time, after sequencing four males, to balance the genders a bit”. He smiles: “And after Watson we also felt that it was okay to do Kriek”.

... more about:
»DNA »LUMC »sequence
Eight times coverage
The DNA sequencing was done with the Illumina 1G equipment. This has been installed in January 2007 in the Leiden Genome Technology Center, the genomics facility of LUMC and CMSB. In total, approx. 22 billion base pairs (the ‘letters’ of the DNA language) were read. That is almost eight times the size of the human genome.’

Dr. Johan den Dunnen, project leader at the Leiden Genome Technology Center: 'This high coverage is needed to prevent mistakes, connect the separate reads and reduces the chance of occasional uncovered gaps.

Johan den Dunnen: 'The sequencing itself took about six months. Partly since it was run as a ‘side operation’ filling the empty positions on the machine while running other projects. Would such a job be done in one go, it would take just ten weeks”.

The cost of the project was approximately €40.000.- This does not include further in-depth bioinformatics analysis. This is estimated to take another six months.

In 2001, the DNA sequence was published of a combination of persons. The DNA sequences of Jim Watson, discoverer of the DNA’s double helix structure, followed in 2007, and later the DNA of gene hunter Craig Venter. Recently the completion of the sequences of two Yoruba-Africans was announced.
The researchers announced their news at the yearly ‘Bessensap’ meeting, bringing together the Dutch scientists and the press. The Netherlands Organization for Scientific Research NWO organizes this event jointly with the Association of Science Writers VWN and Science Center NEMO. In its eight years of existence, Bessensap ( has had several high-profile news items. It has had a debate with Italian ‘clonedoctor’ Severino Antinori and hosted dino-hunter Jack Horner, who was key in the Jurassic-Park modelling. During Bessensap also the yearly Eureka prize is awarded for the best popular-scientific book and media production.

David Redeker | alfa
Further information:

Further reports about: DNA LUMC sequence

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>