Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists flick genetic switch; may lead to new disease treatments

04.07.2002


Genes that are inappropriately turned on play a critical role in triggering some diseases. For researchers, the trick is learning how to deactivate these genes to treat illnesses. In a step toward reaching that goal, scientists at Stanford University Medical Center have developed a gene-therapy technique to switch off genes in mice. The finding could potentially lead to ways of treating such diseases as cancer, hepatitis C and AIDS.



In plants and lower organisms such as flies or worms, researchers can experimentally switch off genes by inserting RNA. Genes normally produce RNA molecules, which the cell uses as a template to create proteins. The injected RNA interferes with the usual order of events and prevents protein from being made - effectively shutting down the gene.

"RNA inhibition has been shown to work in lower organisms, but there was some question about whether it would work in mammals," said Mark Kay, MD, PhD, professor of genetics and pediatrics at Stanford.


Initial attempts to use RNA inhibition in mice were unsuccessful, but when Anton McCaffrey, PhD, joined Kay’s lab as a postdoctoral fellow he decided to give RNA inhibition another chance. His results will be published in the July 4 issue of Nature.

To observe the RNA inhibition process, McCaffrey injected mice with a firefly gene called luciferase that makes a light-producing protein. In half the mice, he also injected RNA that inhibits luciferase production. In mice receiving both luciferase and the RNA, whole-body scans showed 80 percent to 90 percent less light compared to mice that received the luciferase gene alone.

In a related experiment, McCaffrey hooked the luciferase gene to a small part of a gene from the hepatitis C virus and injected the hybrid gene into mice along with RNA that is specific to the DNA found in hepatitis C. Once again, mice that received both the gene and the RNA produced significantly less light than mice receiving only the luciferase gene. This experiment suggests that RNA inhibition could be used to deactivate genes from a virus such as hepatitis C or HIV, Kay said. By deactivating genes used by the virus to replicate, researchers could halt an infection in its tracks.

Kay added that although these results look promising, they rely on injected RNA. "RNA doesn’t last long in cells," he said. The problem is that in order for the RNA inhibition to work, two RNA molecules must be paired to form a double-stranded molecule. An easier approach would be to inject DNA, which is more durable than RNA, and have the DNA produce the proper RNA. Usual methods of injecting DNA, however, produce single-stranded RNA, which is useless for inhibition - a problem the scientists have worked to solve.

McCaffrey and Kay devised a way around this dilemma after consulting with a colleague. The team injected mice with a DNA molecule that produces an unusual RNA which doubles back on itself like a hairpin to make a single, double-stranded molecule. Injecting this novel RNA into mice was as effective at inhibiting the luciferase gene as injecting double-stranded RNA. What’s more, even after the hairpin RNA breaks down, the DNA remains in the cell and continues producing new RNA.

Kay said that this initial work is a proof of concept. "The ultimate goal is to use this to treat a disease," Kay said. "We can do this by placing these molecules into standard gene-therapy vectors." As examples, he said researchers could deactivate virus genes or genes involved in cancer. Kay added that methods of delivering DNA to cells are currently being tested and could potentially be used to provide RNA inhibition, staving off or even preventing some diseases.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>