Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists flick genetic switch; may lead to new disease treatments

04.07.2002


Genes that are inappropriately turned on play a critical role in triggering some diseases. For researchers, the trick is learning how to deactivate these genes to treat illnesses. In a step toward reaching that goal, scientists at Stanford University Medical Center have developed a gene-therapy technique to switch off genes in mice. The finding could potentially lead to ways of treating such diseases as cancer, hepatitis C and AIDS.



In plants and lower organisms such as flies or worms, researchers can experimentally switch off genes by inserting RNA. Genes normally produce RNA molecules, which the cell uses as a template to create proteins. The injected RNA interferes with the usual order of events and prevents protein from being made - effectively shutting down the gene.

"RNA inhibition has been shown to work in lower organisms, but there was some question about whether it would work in mammals," said Mark Kay, MD, PhD, professor of genetics and pediatrics at Stanford.


Initial attempts to use RNA inhibition in mice were unsuccessful, but when Anton McCaffrey, PhD, joined Kay’s lab as a postdoctoral fellow he decided to give RNA inhibition another chance. His results will be published in the July 4 issue of Nature.

To observe the RNA inhibition process, McCaffrey injected mice with a firefly gene called luciferase that makes a light-producing protein. In half the mice, he also injected RNA that inhibits luciferase production. In mice receiving both luciferase and the RNA, whole-body scans showed 80 percent to 90 percent less light compared to mice that received the luciferase gene alone.

In a related experiment, McCaffrey hooked the luciferase gene to a small part of a gene from the hepatitis C virus and injected the hybrid gene into mice along with RNA that is specific to the DNA found in hepatitis C. Once again, mice that received both the gene and the RNA produced significantly less light than mice receiving only the luciferase gene. This experiment suggests that RNA inhibition could be used to deactivate genes from a virus such as hepatitis C or HIV, Kay said. By deactivating genes used by the virus to replicate, researchers could halt an infection in its tracks.

Kay added that although these results look promising, they rely on injected RNA. "RNA doesn’t last long in cells," he said. The problem is that in order for the RNA inhibition to work, two RNA molecules must be paired to form a double-stranded molecule. An easier approach would be to inject DNA, which is more durable than RNA, and have the DNA produce the proper RNA. Usual methods of injecting DNA, however, produce single-stranded RNA, which is useless for inhibition - a problem the scientists have worked to solve.

McCaffrey and Kay devised a way around this dilemma after consulting with a colleague. The team injected mice with a DNA molecule that produces an unusual RNA which doubles back on itself like a hairpin to make a single, double-stranded molecule. Injecting this novel RNA into mice was as effective at inhibiting the luciferase gene as injecting double-stranded RNA. What’s more, even after the hairpin RNA breaks down, the DNA remains in the cell and continues producing new RNA.

Kay said that this initial work is a proof of concept. "The ultimate goal is to use this to treat a disease," Kay said. "We can do this by placing these molecules into standard gene-therapy vectors." As examples, he said researchers could deactivate virus genes or genes involved in cancer. Kay added that methods of delivering DNA to cells are currently being tested and could potentially be used to provide RNA inhibition, staving off or even preventing some diseases.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>