Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stanford scientists flick genetic switch; may lead to new disease treatments


Genes that are inappropriately turned on play a critical role in triggering some diseases. For researchers, the trick is learning how to deactivate these genes to treat illnesses. In a step toward reaching that goal, scientists at Stanford University Medical Center have developed a gene-therapy technique to switch off genes in mice. The finding could potentially lead to ways of treating such diseases as cancer, hepatitis C and AIDS.

In plants and lower organisms such as flies or worms, researchers can experimentally switch off genes by inserting RNA. Genes normally produce RNA molecules, which the cell uses as a template to create proteins. The injected RNA interferes with the usual order of events and prevents protein from being made - effectively shutting down the gene.

"RNA inhibition has been shown to work in lower organisms, but there was some question about whether it would work in mammals," said Mark Kay, MD, PhD, professor of genetics and pediatrics at Stanford.

Initial attempts to use RNA inhibition in mice were unsuccessful, but when Anton McCaffrey, PhD, joined Kay’s lab as a postdoctoral fellow he decided to give RNA inhibition another chance. His results will be published in the July 4 issue of Nature.

To observe the RNA inhibition process, McCaffrey injected mice with a firefly gene called luciferase that makes a light-producing protein. In half the mice, he also injected RNA that inhibits luciferase production. In mice receiving both luciferase and the RNA, whole-body scans showed 80 percent to 90 percent less light compared to mice that received the luciferase gene alone.

In a related experiment, McCaffrey hooked the luciferase gene to a small part of a gene from the hepatitis C virus and injected the hybrid gene into mice along with RNA that is specific to the DNA found in hepatitis C. Once again, mice that received both the gene and the RNA produced significantly less light than mice receiving only the luciferase gene. This experiment suggests that RNA inhibition could be used to deactivate genes from a virus such as hepatitis C or HIV, Kay said. By deactivating genes used by the virus to replicate, researchers could halt an infection in its tracks.

Kay added that although these results look promising, they rely on injected RNA. "RNA doesn’t last long in cells," he said. The problem is that in order for the RNA inhibition to work, two RNA molecules must be paired to form a double-stranded molecule. An easier approach would be to inject DNA, which is more durable than RNA, and have the DNA produce the proper RNA. Usual methods of injecting DNA, however, produce single-stranded RNA, which is useless for inhibition - a problem the scientists have worked to solve.

McCaffrey and Kay devised a way around this dilemma after consulting with a colleague. The team injected mice with a DNA molecule that produces an unusual RNA which doubles back on itself like a hairpin to make a single, double-stranded molecule. Injecting this novel RNA into mice was as effective at inhibiting the luciferase gene as injecting double-stranded RNA. What’s more, even after the hairpin RNA breaks down, the DNA remains in the cell and continues producing new RNA.

Kay said that this initial work is a proof of concept. "The ultimate goal is to use this to treat a disease," Kay said. "We can do this by placing these molecules into standard gene-therapy vectors." As examples, he said researchers could deactivate virus genes or genes involved in cancer. Kay added that methods of delivering DNA to cells are currently being tested and could potentially be used to provide RNA inhibition, staving off or even preventing some diseases.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at

Amy Adams | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>