Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reproductive plasticity revealed: Neotropical treefrog can choose to lay eggs in water or on land

20.05.2008
Discovery opens new avenues of research into the evolution of reproduction on land

When frogs reproduce, like all vertebrates, they either lay their eggs in water or on land – with one exception, according to new research by a team of Boston University scientists who discovered a treefrog (Dendropsophus ebraccatus) in Panama that reproduces both ways. The neotropical frog makes a behavioral decision to lay egg masses aquatically in a pond or terrestrially on the overhanging plants above a pond, where the newly-hatched tadpoles simply fall into the water.

The dual reproductive capabilities enable this species of tree frogs to choose the best environment for egg development avoiding either aquatic predators or the hot tropical sunlight that dries out the eggs. In two shady forest ponds the mating frogs laid terrestrial egg masses, as expected from previous research. In a third pond in an old gravel quarry without a forest canopy, the vast majority -- 76 percent -- of the eggs were laid in water, supported by aquatic vegetation. The remaining 24 percent were on leaves above the pond, although the mortality rate of these eggs was high due to the heat and lack of shade.

The study, “Reproductive Mode Plasticity: Aquatic and Terrestrial Oviposition in a Treefrog,” by BU graduate student Justin C. Touchon and Assistant Professor of Biology Karen M. Warkentin appears in the Proceedings of the National Academy of Science (PNAS) online this week.

... more about:
»Warkentin »Water »aquatic »terrestrial »treefrog

To test if genetic differences made frogs lay eggs in water or on land, or if instead their different environments affected egg-laying choices, Touchon and Warkentin built miniature ponds in an open field and in the forest. When they placed pairs of mating treefrogs in the shaded ponds, the frogs laid eggs on leaves above the water. In unshaded ponds, however, frogs put most of their eggs in the water.

Although this frog is the first vertebrate discovered to show reproductive flexibility, Touchon and Warkentin emphasize that it is probably not alone. The way an animal reproduces has been viewed as fixed, since most aquatic eggs die on land, and terrestrial eggs drown in water. This little yellow treefrog shows us such inflexibility is not universal.

Thus, the evolutionary change from aquatic to terrestrial eggs -- which has happened many times -- may not be a dichotomous switch but instead represent movement along a continuum.

Touchon and Warkentin suggest that this treefrog “could represent an intermediate stage in the evolution of terrestrial reproduction, combining a retained ancestral capacity for aquatic development with a derived ability for terrestrial oviposition and development.” This discovery opens new avenues of research into the evolution of reproduction on land. The treefrog’s ability to vary where it lays its eggs might also help it cope with changes in its environment, improving its chances of surviving habitat clearing or climate change.

Ronald Rosenberg | EurekAlert!
Further information:
http://www.bu.edu

Further reports about: Warkentin Water aquatic terrestrial treefrog

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>