Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sulfur in marine archaeological shipwrecks – the “hull story” gives a sour aftertaste

19.05.2008
Advanced chemical analyses reveal that, with the help of smart scavenging bacteria, sulfur and iron compounds accumulated in the timbers of the Swedish warship Vasa during her 333 years on the seabed of the Stockholm harbour.

Contact with oxygen, in conjunction with the high humidity of the museum environment, causes these contaminants to produce sulfuric acid, according to a new doctoral thesis in chemistry from Stockholm University.

The Vasa sank in Stockholm’s harbour on her maiden voyage in 1628 and was salvaged in 1961. The impressively restored ship is, after conservation, on display in the Vasa Museum in Stockholm. At present over 2,000 acidic sulfate salt precipitates have been registered in the timbers of the wreck as a result of the sulfuric acid formation.

In her doctoral thesis from Structural Chemistry at Stockholm University, Yvonne Fors indicates that sulfur contaminants are a common conservation concern for marine archaeological wood. Her thesis presents the background, consequences and some remedies for these processes.

... more about:
»Fors »Iron »Vasa »acid »compounds »sulfuric »thesis

The seawater at the Vasa’s wreck site became heavily polluted over the course of time and bacterial degradation of organic waste from the growing city consumed most of the oxygen in the water. Malodorous hydrogen sulfide was produced by scavenging bacteria, resulting in the accumulation of different sulfur and iron compounds in the wreck’s timbers during 333 years on the seabed.

“In the Vasa high sulfur concentrations are found only in the surface layers of the timbers, while for other shipwrecks such as the Mary Rose in Portsmouth, England, sulfur has penetrated throughout the hull. There are more than two tonnes of sulfur in each of them”, says Yvonne Fors, who has studied how sulfur passes from seawater into the timbers. Advanced x-ray spectroscopic analyses at international research facilities in USA and France were used to map the distribution of the sulfur and iron compounds in the wood cells of the timber. Through contact with oxygen and high humidity conditions sulfur and iron compounds may develop sulfuric acid. Presently, there is approximately two tonnes of sulfuric acid in the Vasa’s wood.

“It is essential to find out as much as possible about how and where the different compounds are bonded in the cell structure of the timber in order to be able to predict their reactivity and the possibility of removing them,” says Yvonne Fors. It appears that the sulfur and iron contaminants can only be partially extracted, without seriously damaging the fragile wood. “It is important to keep a stable climate in the museum to slow down the processes,” says Yvonne Fors. High acidity can have a long-term detrimental effect on the strength of the timber, and this must be limited. Yvonne Fors has carried out some promising initial experiments neutralising the acid in loose pieces from the Vasa by means of ammonia gas. However, any possible side effects on the wood must be carefully evaluated. The discoveries and conclusions in this thesis are an important first step in prolonging the expiration date of this national treasure.

The title of the thesis: Sulfur-Related Conservation Concerns for Marine Archaeological Wood. The Origin, Speciation and Distribution of Accumulated Sulfur with Some Remedies for the Vasa.
The thesis can be downloaded as a PDF file at:
http://www.diva-portal.org/su/theses/abstract.xsql?dbid=7627
The Swedish warship Vasa sank on her maiden voyage in the mouth of the Stockholm harbour on the 10th of August 1628. The Vasa was fitted with what were then the most powerful armaments carried by any ship in northern Europe, and was sent to help the Swedish King Gustav II Adolf in the struggle for control over the Baltics. However, the ship lacked stability and keeled over in a gust and sank to a depth of thirty-two meters after sailing for just over a kilometre. The hull was salvaged in 1961, 333 years later, during a remarkable diving operation, and is now on display in the Vasa Museum in Stockholm.

Maria Erlandsson | alfa
Further information:
http://www.vr.se

Further reports about: Fors Iron Vasa acid compounds sulfuric thesis

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>