Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female Concave-eared frogs draw mates with ultrasonic calls

13.05.2008
Most female frogs don’t call; most lack or have only rudimentary vocal cords. A typical female selects a mate from a chorus of males and then – silently – signals her beau.

But the female concave-eared torrent frog, Odorrana tormota, has a more direct method of declaring her interest: She emits a high-pitched chirp that to the human ear sounds like that of a bird.

This is one of several unusual frog-related findings reported this week in the journal Nature.

O. tormota lives in a noisy environment on the brushy edge of streams in the Huangshan Hot Springs, in central China, where waterfalls and rushing water create a steady din. The frog has a recessed eardrum, said Albert Feng, a professor of molecular and integrative physiology at the University of Illinois and team leader on the new study.

... more about:
»Feng »Sound »Ultrasonic »emit »tormota

“In the world we know of only two species – the other one in Southeast Asia – that have the concave ear,” Feng said. “The others all have eardrums on the body surface.”

Earlier studies, conducted by Feng, Jun-Xian Shen at the Institute of Biophysics at the Chinese Academy of Sciences and Peter Narins at the University of California, Los Angeles, found that O. tormota males emit – and respond to – unusual chirping calls from other males. These calls are audible, but also have energy in the ultrasonic range. The recessed ear structure protects an eardrum that is 1/30 the thickness of that of a normal frog, allowing it to detect very high frequency sounds.

The unusual ear structure and the high-pitched calls are likely an evolutionary adaptation to the noisy environment, Feng said. The waterfalls and streams produce a steady racket predominantly in a lower frequency range than that used by the frogs.

Laboratory experiments showed that the frogs could hear most of the audible and ultrasonic frequencies emitted by other O. tormota frogs. The only other animals known to use ultrasonic communication are bats, dolphins, whales and some insects.

The frog calls are quite complex. A single O. tormota frog broadcasts its message over several frequencies at once, at harmonic intervals, like a chord strummed simultaneously on several strings.

The new analysis, conducted by Shen, Feng and Narins, found that female O. tormota frogs also emit a call that spans audible and ultrasonic frequencies. The team has not observed females vocalizing in the wild (the frogs are nocturnal and can leap up to 30 times their body length), but in laboratory settings the females emitted calls only when they were carrying eggs.

Male O. tormota frogs exposed to recorded female calls were quite responsive, usually chirping within a small fraction of a second.

“The frog’s response is instantaneous – right after the stimulus,” Feng said.

In the laboratory, the males usually chirped and then leapt directly at the source of the female call. Their ability to home in on the sound call was astonishingly precise, Feng said. A typical male could leap toward the sound with an accuracy of more than 99 percent.

“This is just unheard of in the frog kingdom,” he said.

Only elephants, humans, barn owls and dolphins are known to detect sound with similar precision. The small distance between the frog’s ears (about 1 centimeter) makes its ability to localize the sound that much more impressive, Feng said.

How the female picks a mate in the wild is still unknown, however.

“We have a lot of work to do to figure out whether she directs the signal to one male or whether she lets a bunch of males come and compete, or whether there is any kind of dueting session during which she then decides: ‘OK, You’re my guy. Hop on my back and I’ll take you to the creek!’ ” Feng said.

These studies likely have implications for human health. Earlier research into the mechanics of frog hearing and directional hearing helped Feng and his colleagues at the U. of I.’s Beckman Institute for Advanced Science and Technology design an “intelligent” hearing aid that boosts sound signals of interest embedded in other sounds in the immediate environment of the listener.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Feng Sound Ultrasonic emit tormota

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>