Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human immune system may limit future evolution

01.07.2002


Scientists from Imperial College London have suggested why the human genome may possess far fewer genes than previously estimated before the human genome project was begun.



Research published in the July issue of Trends in Immunology, shows how a more advanced immune system in humans could explain why the human genome may have only a slightly greater number of genes than the plant Arabidopsis thaliana, and probably less than rice, Oryza sativa.

Dr Andrew George, from Imperial College London and based at the Hammersmith Hospital comments: “Although humans are normally thought to be considerably more complex than organisms, such as plants, rice, yeast and earthworms, this is not reflected in their number of genes, with humans having less genes than other supposedly less complex organisms.”


Dr George suggests that the limited number of functional genes in the human genome may be a result of the presence of a more advanced immune system. The immune system is designed to protect us from disease, but it is important that the cells of the immune system do not recognise our own tissues or cells, as this would lead autoimmune disease.

Autoimmune disease is avoided by killing off any immune cells that recognise molecules produced by the body (self-molecules). This means that the larger the genome, the more self-molecules the immune system needs to tolerate.

As a result, the immune system has to kill more immune cells. If there are too many genes then this results in the vast majority of immune cells dying, paralysing the immune system, and leaving the body unable to fight off disease or infection.

Dr George adds: “The limited size of the human genome could make further evolution for humans difficult. Fortunately, the human genome has been able to create genes which have multiple uses, thus making the best use of a limited number of genes.”

Tony Stephenson | alfa

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>