Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The human immune system may limit future evolution

01.07.2002


Scientists from Imperial College London have suggested why the human genome may possess far fewer genes than previously estimated before the human genome project was begun.



Research published in the July issue of Trends in Immunology, shows how a more advanced immune system in humans could explain why the human genome may have only a slightly greater number of genes than the plant Arabidopsis thaliana, and probably less than rice, Oryza sativa.

Dr Andrew George, from Imperial College London and based at the Hammersmith Hospital comments: “Although humans are normally thought to be considerably more complex than organisms, such as plants, rice, yeast and earthworms, this is not reflected in their number of genes, with humans having less genes than other supposedly less complex organisms.”


Dr George suggests that the limited number of functional genes in the human genome may be a result of the presence of a more advanced immune system. The immune system is designed to protect us from disease, but it is important that the cells of the immune system do not recognise our own tissues or cells, as this would lead autoimmune disease.

Autoimmune disease is avoided by killing off any immune cells that recognise molecules produced by the body (self-molecules). This means that the larger the genome, the more self-molecules the immune system needs to tolerate.

As a result, the immune system has to kill more immune cells. If there are too many genes then this results in the vast majority of immune cells dying, paralysing the immune system, and leaving the body unable to fight off disease or infection.

Dr George adds: “The limited size of the human genome could make further evolution for humans difficult. Fortunately, the human genome has been able to create genes which have multiple uses, thus making the best use of a limited number of genes.”

Tony Stephenson | alfa

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>