Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Silent" fungus metabolism awakened for new natural products

02.05.2008
US scientists have re-awakened ‘silent’ metabolic pathways in fungi to reveal a new range of natural products. The research could provide not only a source of new drugs, but a way to “listen to what fungi are saying” to organisms around them.

Fungi produce a wide variety of natural products, including potent toxins – for example, the amanitins, primarily responsible for the toxicity of the death cap fungus – and life-saving drugs such as penicillin. As a result, the genetics of fungi have generated much interest in recent years.

Now, Robert Cichewicz and colleagues at the University of Oklahoma, Norman, US, have shown that metabolic pathways that are normally ‘silent’ can be re-activated to make new compounds, in work published in the Royal Society of Chemistry journal Organic & Biomolecular Chemistry.

Many fungi have a wealth of genes encoding for far more natural products than they actually produce, says Cichewicz. The explanation is thought to be that when fungi do not need certain compounds, they inhibit the transcription of the DNA that codes for the proteins that make them, preventing their biosynthesis.

... more about:
»Cichewicz »DNA »fungi »fungus »natural

Knowing what these mystery compounds are could be very important for the development of new medicines, as well as for helping us to understand the ecological roles that fungi play, claims Cichewicz.

The DNA involved is inhibited by being scrunched up in a globular form called heterochromatin. To activate this DNA and turn on these ‘silent’ natural product pathways, the team decided to treat fungal cultures with small molecules that interfere with the formation of the heterochromatin – allowing the DNA to be transcripted.

To show their idea in action, the researchers took a culture of Cladosporium cladosporioides, a tidal pool fungus, and treated it separately with 5-azacytidine and suberoylanilide hydroxamic acid. Both treatments, says Cichewicz, dramatically changed the natural product output of the fungus, with two completely new natural products being isolated.

The new approach impresses Jon Clardy at the Harvard Medical School, Boston, US, who says that it could ‘greatly expand the suite of biologically active small molecules obtained from fungi’ and that it ‘capitalises on recent developments in drug discovery to increase the odds of discovering new drugs’.

The results also have important implications for research into fungi and other microorganisms, explains Cichewicz. Natural products are the means by which fungi ‘communicate’ with organisms around them, so we are in essence, he says, ‘discovering chemical means for listening to what fungi are saying’.

Jon Edwards | alfa
Further information:
http://www.rsc.org

Further reports about: Cichewicz DNA fungi fungus natural

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>