Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Silent" fungus metabolism awakened for new natural products

02.05.2008
US scientists have re-awakened ‘silent’ metabolic pathways in fungi to reveal a new range of natural products. The research could provide not only a source of new drugs, but a way to “listen to what fungi are saying” to organisms around them.

Fungi produce a wide variety of natural products, including potent toxins – for example, the amanitins, primarily responsible for the toxicity of the death cap fungus – and life-saving drugs such as penicillin. As a result, the genetics of fungi have generated much interest in recent years.

Now, Robert Cichewicz and colleagues at the University of Oklahoma, Norman, US, have shown that metabolic pathways that are normally ‘silent’ can be re-activated to make new compounds, in work published in the Royal Society of Chemistry journal Organic & Biomolecular Chemistry.

Many fungi have a wealth of genes encoding for far more natural products than they actually produce, says Cichewicz. The explanation is thought to be that when fungi do not need certain compounds, they inhibit the transcription of the DNA that codes for the proteins that make them, preventing their biosynthesis.

... more about:
»Cichewicz »DNA »fungi »fungus »natural

Knowing what these mystery compounds are could be very important for the development of new medicines, as well as for helping us to understand the ecological roles that fungi play, claims Cichewicz.

The DNA involved is inhibited by being scrunched up in a globular form called heterochromatin. To activate this DNA and turn on these ‘silent’ natural product pathways, the team decided to treat fungal cultures with small molecules that interfere with the formation of the heterochromatin – allowing the DNA to be transcripted.

To show their idea in action, the researchers took a culture of Cladosporium cladosporioides, a tidal pool fungus, and treated it separately with 5-azacytidine and suberoylanilide hydroxamic acid. Both treatments, says Cichewicz, dramatically changed the natural product output of the fungus, with two completely new natural products being isolated.

The new approach impresses Jon Clardy at the Harvard Medical School, Boston, US, who says that it could ‘greatly expand the suite of biologically active small molecules obtained from fungi’ and that it ‘capitalises on recent developments in drug discovery to increase the odds of discovering new drugs’.

The results also have important implications for research into fungi and other microorganisms, explains Cichewicz. Natural products are the means by which fungi ‘communicate’ with organisms around them, so we are in essence, he says, ‘discovering chemical means for listening to what fungi are saying’.

Jon Edwards | alfa
Further information:
http://www.rsc.org

Further reports about: Cichewicz DNA fungi fungus natural

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>