Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decision making at the cellular level

26.06.2002


It’s a wonder cells make it through the day with the barrage of cues and messages they receive and transmit to direct the most basic and necessary functions of life. Such cell communication, or signal transduction, was at least thought to be an "automatic" cascade of biochemical events.



Now, however, a study reported in a recent issue of Nature by Johns Hopkins and Harvard scientists has found that even before a message makes it through the outer cell membrane to the inner nucleus, the cell is busy activating a molecular switch to guide how the message will be delivered in the first place.

"Our results add a layer of complexity to understanding how messages are communicated by cells," says Mark Donowitz, M.D., professor of medicine at Hopkins and a co-author of the study in the June 20 issue. "But by the same token, the new layer offers an exciting new aspect of cellular circuitry that could lead to potential therapies for many serious disorders," he says.


"This extra step in cell signaling actually lets the cell figure out how it’s going to communicate what it needs to," says Donowitz. "Without this switchboard system, the cell would go crazy and overload because every stimulus that passed by would be forwarded to its interior."

The two most common cellular signals are calcium and cyclic adenosine monophosphate, or cAMP. They are sometimes known as "second messengers" because they intercept messages from receptors on the cell surface and relay them to proteins within the cell, altering their shape and thus their behavior and that of the cell at large.

Donowitz and colleagues showed that a cell decides which signal to use, calcium or cAMP, by the presence or absence of a specific protein called sodium/hydrogen exchanger regulatory factor 2, or NHERF2. Specifically, their experiments tested how the receptor for parathyroid hormone, and for parathyroid hormone-related protein (also a hormone), on the cell surface signals the interior of the cell to perform specific functions.

They found that the signal includes more than just the receptor and the proteins that latch onto it, but requires an additional class of proteins (of which NHERF2 is a member) called PDZ proteins that determine whether to send the signal via calcium or through cAMP. If NHERF2 is present along with the parathyroid hormone receptor, then the signal is sent via calcium. If there is no NHERF2, then cAMP is responsible for delivering the message.

The cell’s decision to use calcium or cAMP is important because each generates different responses from its target proteins, says Donowitz. For example, a signal relayed by cAMP might induce a kidney cell to release water or a bone cell to break down into its constituent minerals. Likewise, signals relayed by calcium could lead to the aggregation of blood platelets, which cause clots, or to the release of histamine, a major component of the allergic response.

"These results show that at the very earliest stage of cell signaling, called receptor binding, there is a switch that determines what kind of signal will be used," says Donowitz. "To understand cell signaling, you really have to know the whole system."

The receptor for parathyroid hormone, for example, is crucial for signaling and proper functioning of the parathyroid glands, intestinal cells and kidney cells. Parathyroid hormone and parathyroid hormone-related protein are vital to the normal functioning of the body. Disruptions in the regulation or amount of these substances can lead to serious ailments, including kidney stones, convulsions, decalcification of bones or "rubber bones," and can interfere with the normal growth of bones and cartilage. Common diseases that are caused in part by faulty signaling in cells include cancer, diabetes and disorders of the immune system.


Other authors of the study are C. Chris Yun of Hopkins, Matthew J. Mahon (lead author) and Gino V. Segre (senior author), both of Massachusetts General Hospital and Harvard Medical School.

M.J. Mahon, et al. Nature (2002) Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Vol. 417:858-861.

Trent Stockton | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/graduateprograms/cmm/donowitz.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>