Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decision making at the cellular level

26.06.2002


It’s a wonder cells make it through the day with the barrage of cues and messages they receive and transmit to direct the most basic and necessary functions of life. Such cell communication, or signal transduction, was at least thought to be an "automatic" cascade of biochemical events.



Now, however, a study reported in a recent issue of Nature by Johns Hopkins and Harvard scientists has found that even before a message makes it through the outer cell membrane to the inner nucleus, the cell is busy activating a molecular switch to guide how the message will be delivered in the first place.

"Our results add a layer of complexity to understanding how messages are communicated by cells," says Mark Donowitz, M.D., professor of medicine at Hopkins and a co-author of the study in the June 20 issue. "But by the same token, the new layer offers an exciting new aspect of cellular circuitry that could lead to potential therapies for many serious disorders," he says.


"This extra step in cell signaling actually lets the cell figure out how it’s going to communicate what it needs to," says Donowitz. "Without this switchboard system, the cell would go crazy and overload because every stimulus that passed by would be forwarded to its interior."

The two most common cellular signals are calcium and cyclic adenosine monophosphate, or cAMP. They are sometimes known as "second messengers" because they intercept messages from receptors on the cell surface and relay them to proteins within the cell, altering their shape and thus their behavior and that of the cell at large.

Donowitz and colleagues showed that a cell decides which signal to use, calcium or cAMP, by the presence or absence of a specific protein called sodium/hydrogen exchanger regulatory factor 2, or NHERF2. Specifically, their experiments tested how the receptor for parathyroid hormone, and for parathyroid hormone-related protein (also a hormone), on the cell surface signals the interior of the cell to perform specific functions.

They found that the signal includes more than just the receptor and the proteins that latch onto it, but requires an additional class of proteins (of which NHERF2 is a member) called PDZ proteins that determine whether to send the signal via calcium or through cAMP. If NHERF2 is present along with the parathyroid hormone receptor, then the signal is sent via calcium. If there is no NHERF2, then cAMP is responsible for delivering the message.

The cell’s decision to use calcium or cAMP is important because each generates different responses from its target proteins, says Donowitz. For example, a signal relayed by cAMP might induce a kidney cell to release water or a bone cell to break down into its constituent minerals. Likewise, signals relayed by calcium could lead to the aggregation of blood platelets, which cause clots, or to the release of histamine, a major component of the allergic response.

"These results show that at the very earliest stage of cell signaling, called receptor binding, there is a switch that determines what kind of signal will be used," says Donowitz. "To understand cell signaling, you really have to know the whole system."

The receptor for parathyroid hormone, for example, is crucial for signaling and proper functioning of the parathyroid glands, intestinal cells and kidney cells. Parathyroid hormone and parathyroid hormone-related protein are vital to the normal functioning of the body. Disruptions in the regulation or amount of these substances can lead to serious ailments, including kidney stones, convulsions, decalcification of bones or "rubber bones," and can interfere with the normal growth of bones and cartilage. Common diseases that are caused in part by faulty signaling in cells include cancer, diabetes and disorders of the immune system.


Other authors of the study are C. Chris Yun of Hopkins, Matthew J. Mahon (lead author) and Gino V. Segre (senior author), both of Massachusetts General Hospital and Harvard Medical School.

M.J. Mahon, et al. Nature (2002) Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Vol. 417:858-861.

Trent Stockton | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/graduateprograms/cmm/donowitz.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>