Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizard hunting styles impact ability to walk, run

23.04.2008
Foraging sheds light on evolution of biomechanics

The technique lizards use to grab their grub influences how they move, according to researchers at Ohio University.

A research team led by doctoral student Eric McElroy tracked 18 different species of lizards as they walked or ran in order to understand how their foraging styles impact their biomechanics. The study, funded by the National Science Foundation, was featured in the April 1 edition of the Journal of Experimental Biology.

Lizards use two basic foraging techniques. In the first approach, aptly dubbed sit-and-wait, lizards spend most of their time perched in one location waiting for their prey to pass. Then, with a quick burst of speed, they run after their prey, snatching it up with their tongues.

... more about:
»Speed »ability »foraging »prey »run »styles »technique

In the other form of foraging, known as wide or active foraging, lizards move constantly but very slowly in their environment, using their chemosensory system to stalk their prey, according to the research team, which included McElroy’s adviser Stephen Reilly, professor of biological sciences, and undergraduate honors thesis student Kristin Hickey.

Although wide foraging evolved from the sit-and-wait technique, these two styles are almost opposites. Some wide foragers are on the move about 80 percent of the time while sit-and-wait foragers may move only about 10 percent of the time, said Reilly, co-author of a recent book on the topic, Lizard Ecology, published by the Cambridge University Press.

While all lizards have the ability to run, a predatory defense mechanism, the study found that sit-and-wait lizards won’t walk. Lizards that use the sit-and-wait method of foraging use running mechanics even when moving at slower speeds.

Wide foragers, however, evolved a walking gait and mechanics. They must move at slower speeds in order to use their advanced chemosensory system to locate their prey.

Foraging and locomotion are so closely linked, in fact, that three groups of wide foragers that had reverted to using the sit-and-wait technique actually lost the ability to walk, the researchers reported.

“The most interesting aspect of this research is that it demonstrates a clear link between animal behavior and functional morphology. It’s quite amazing and surprising that the behavioral diversity that everyone knows about and is inspired by is grounded in form, function and physiology,” McElroy said.

The researchers used a race track with a built-in force plate to record the forces generated by the lizards and a high-speed video camera to record each critter moving at various speeds. The scientists collected data from the force plate and analyzed the video to determine whether the lizard was using running or walking mechanics.

The study used a large, representative sample of lizards made up of 18 different species, such as skinks, iguanas and monitor lizards. This extensive study uses one of the largest data sets for center of mass mechanics, McElroy said, and is one of the few that focuses on reptiles instead of mammals.

“Everybody works with people, dogs or horses. But they’re all freaks,” Reilly said. “They’ve gone erect, they have extra joints. They are the kings of bouncing vaulting and running fast. We are working on the sprawlers.”

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

Further reports about: Speed ability foraging prey run styles technique

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>