Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizard hunting styles impact ability to walk, run

23.04.2008
Foraging sheds light on evolution of biomechanics

The technique lizards use to grab their grub influences how they move, according to researchers at Ohio University.

A research team led by doctoral student Eric McElroy tracked 18 different species of lizards as they walked or ran in order to understand how their foraging styles impact their biomechanics. The study, funded by the National Science Foundation, was featured in the April 1 edition of the Journal of Experimental Biology.

Lizards use two basic foraging techniques. In the first approach, aptly dubbed sit-and-wait, lizards spend most of their time perched in one location waiting for their prey to pass. Then, with a quick burst of speed, they run after their prey, snatching it up with their tongues.

... more about:
»Speed »ability »foraging »prey »run »styles »technique

In the other form of foraging, known as wide or active foraging, lizards move constantly but very slowly in their environment, using their chemosensory system to stalk their prey, according to the research team, which included McElroy’s adviser Stephen Reilly, professor of biological sciences, and undergraduate honors thesis student Kristin Hickey.

Although wide foraging evolved from the sit-and-wait technique, these two styles are almost opposites. Some wide foragers are on the move about 80 percent of the time while sit-and-wait foragers may move only about 10 percent of the time, said Reilly, co-author of a recent book on the topic, Lizard Ecology, published by the Cambridge University Press.

While all lizards have the ability to run, a predatory defense mechanism, the study found that sit-and-wait lizards won’t walk. Lizards that use the sit-and-wait method of foraging use running mechanics even when moving at slower speeds.

Wide foragers, however, evolved a walking gait and mechanics. They must move at slower speeds in order to use their advanced chemosensory system to locate their prey.

Foraging and locomotion are so closely linked, in fact, that three groups of wide foragers that had reverted to using the sit-and-wait technique actually lost the ability to walk, the researchers reported.

“The most interesting aspect of this research is that it demonstrates a clear link between animal behavior and functional morphology. It’s quite amazing and surprising that the behavioral diversity that everyone knows about and is inspired by is grounded in form, function and physiology,” McElroy said.

The researchers used a race track with a built-in force plate to record the forces generated by the lizards and a high-speed video camera to record each critter moving at various speeds. The scientists collected data from the force plate and analyzed the video to determine whether the lizard was using running or walking mechanics.

The study used a large, representative sample of lizards made up of 18 different species, such as skinks, iguanas and monitor lizards. This extensive study uses one of the largest data sets for center of mass mechanics, McElroy said, and is one of the few that focuses on reptiles instead of mammals.

“Everybody works with people, dogs or horses. But they’re all freaks,” Reilly said. “They’ve gone erect, they have extra joints. They are the kings of bouncing vaulting and running fast. We are working on the sprawlers.”

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

Further reports about: Speed ability foraging prey run styles technique

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>