Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cone snails and plants used to develop oral drug for pain

18.04.2008
Molecules from cone snail venom and African plants are being used by Queensland researchers as a blueprint to develop an oral drug to treat chronic pain.

Professor David Craik and Dr Richard Clark from the Institute for Molecular Bioscience have received $218,275 from the National Health and Medical Research Council (NHMRC) to aid in translating their research into a product available for Australians to use.

Studies on the molecule they have developed have shown that it is effective in relieving neuropathic pain in animals.

“Neuropathic pain is one of the most severe forms of chronic pain, and very difficult to treat,” Dr Clark said.

... more about:
»Drug »Plants »develop »neuropathic

“Regular pain occurs when the nervous system is stimulated by, for example, an injury, whereas neuropathic pain occurs when the nervous system itself is damaged.”

“Current treatments in neuropathic pain only provide meaningful relief for one in three patients, and all of the current market-leading drugs have serious side effects, as well as taking up to three weeks to begin to take effect.”

Peptides (small proteins) from cone snail venom have attracted recent attention from scientists, as they can target receptors with a high degree of accuracy, thus eliminating severe side effects.

But peptides also degrade rapidly in the body. Professor Craik and Dr Clark have overcome this problem by engineering a circular peptide, using a circular protein backbone discovered by Professor Craik and found in plants such as violets.

The NHMRC Development grant will allow the researchers to further test their molecule to fully establish its therapeutic potential.

“Successful outcomes from this project will provide additional confirmation of the suitability of our molecule as a treatment for neuropathic pain,” Dr Clark said.

“Armed with these data, we will be able to secure a commercial partner and develop this molecule into a tablet for sufferers of chronic pain.”

Bronwyn Adams | EurekAlert!
Further information:
http://www.uq.edu.au
http://www.researchaustralia.com.au

Further reports about: Drug Plants develop neuropathic

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>