Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early clinical trial results back new drug for melanoma

16.04.2008
Rutgers University and the Cancer Institute of New Jersey collaborate in clinical trial

Rutgers Professor Suzie Chen has found that riluzole, a U.S. Food and Drug Administration (FDA) approved drug used to treat Lou Gehrig’s disease (ALS), slows the growth of melanoma, the most aggressive form of malignant skin cancer.

A Phase 0 (zero) clinical trial of riluzole (brand name Rilutek), conducted by James Goydos, a surgical oncologist with The Cancer Institute of New Jersey (CINJ), is in process with a small group of late-stage (stage 3 or 4) melanoma patients. Phase 0 is a recent designation by the FDA for exploratory, first-in-human trials. Goydos reported preliminary but encouraging findings from the trial during a plenary session today at the annual meeting of the American Association for Cancer Research in San Diego.

In about 70 percent of melanoma cases, the disease appears in places that are exposed to the sun. It can then spread to other parts of the body and may become lethal. This type of cancer is not generally responsive to chemotherapy. According to a report from the National Cancer Institute, the incidence rate of melanoma has more than doubled in the past 20 years in the United States.

... more about:
»Clinical »Goydos »Stage »glutamate »melanoma »riluzole »trial

Chen had reported in 2003 the discovery of a gene – Grm1 – responsible for melanoma in laboratory mice. Its normal functions are in the brain, where it is associated with learning and memory; but when this gene is expressed or turned on in certain skin cells, it leads to the development of melanoma.

A common feature to both ALS and melanoma cells is excess glutamate, a cellular growth factor or food for cells. An excess of this protein can overstimulate neurons to the point where they burn out – a possible explanation of what happens in ALS.

In a melanoma cell, the glutamate enters a pernicious loop where it binds to the malfunctioning cell surface protein. The protein operates as a receptor, stimulating the cell to produce more glutamate that, in turn, binds to the receptor, stimulating more production. This cellular “overfeeding” results in the growth and expansion of the melanoma.

“We fixed on riluzole because it is a known inhibitor of glutamate release, the suspected culprit in ALS and possibly melanoma,” said Chen, a professor of chemical biology at the Susan Lehman Cullen Laboratory of Cancer Research in the Ernest Mario School of Pharmacy of Rutgers, The State University of New Jersey, and a CINJ member. “While most of our studies five years ago were with animals, it is humans that we are really interested in.”

In new laboratory experiments using cultures of human melanoma cell lines, riluzole appeared to shut off the glutamate, thus slowing the growth rate of the melanoma cells. Moving forward with animal studies, riluzole demonstrated the same suppression of tumor cell growth and progression seen in cultured cells.

Building on this foundation, Chen joined Goydos to pursue human clinical trials. Goydos is a surgical oncologist and director of the Melanoma and Soft Tissue Oncology Unit at the Cancer Institute of New Jersey, part of the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School (UMDNJ-RWJMS). Goydos is also an Associate Professor of surgery at UMDNJ-RWJMS.

A grant from the National Cancer Institute enabled Goydos to begin an initial or Phase 0 trial. The use of late-stage patients is a requirement. It is a purely experimental exercise designed to make sure the drug that appeared to work in pre-clinical trials is actually performing as expected in humans – “to see if you are hitting your targets,” as Goydos phrased it.

Goydos and his colleagues recruited 11 patients to whom riluzole was administered for two weeks. The researchers tracked the patients’ progress before and after the treatment with biopsies and PET scans, a form of nuclear medicine imaging typically used to detect cancer. “Our preliminary results show three solid positive responses in nine of the patients who had been able to complete the trial to date,” Goydos said. “It is actually quite amazing that we got as many as we did.”

Goydos also noted that there were other patients in the group who showed some indications of responding to riluzole and they will be reassessed when the trial is completed.

“In this situation we hit our target in at least in three, possibly four or five patients,” Goydos said. “It provides enough data to show that we should go on to a more extensive trial.”

The next step is a combined Phase 1/2 trial. Phase 1 will be a toxicity trial where the dosage is increased gradually to determine the appropriate dose and identify possible toxic side-effects.

“We will administer riluzole to the first five or six patients, look for toxicity and then move on to Phase 2,” Goydos said. “We can do this in one combined trial since we are dealing with an FDA-approved drug and not an experimental drug that has never been given to people before.”

Goydos said that the Phase 1/2 trial should begin in August, and he anticipates that it will include between 50 and 100 patients with stage 4 melanoma.

“I think this drug is going to be extremely important as an adjunct to surgical treatment of stage 3 or stage 4 melanoma,” Goydos said. “The challenge is to keep it from recurring, which has happened in patients on the order of 50 percent. With low toxicity likely, riluzole could potentially be given for long periods of time to slow down the metabolic processes responsible for the disease’s recurrence.”

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Clinical Goydos Stage glutamate melanoma riluzole trial

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>