Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharing the road

11.04.2008
Come summer, we will once again marvel at the amazing athletic skills of Olympic athletes while in fact, the simple act of walking is no less remarkable. Just to prevent us from toppling over, the neuromuscular circuitry that controls all bodily movements relies on constant sensory feedback from the periphery to fine-tune its commands to hundreds of muscles.

But it still remains unclear, how during embryonic development, sensory and motor neurons become incorporated into tightly coordinated pathways without getting mixed up. In a study, published in the current issue of Science, scientists at the Salk Institute for Biological Studies report that constant crosstalk between growing sensory and motor neurons keeps them on track.

Skeletal muscle consists of thousands of muscle fibers, each controlled by one motor neuron in the spinal cord that connects to individual muscle fibers and relays signals from the brain. Sensory stretch receptors, which are located in most muscles, as well as temperature, pressure and pain receptors, all send information back to the central nervous system.

“If you look at a cross section of a nerve bundle it really is a mix of wires. Some wires are sending signals out from the spinal cord and others are sending signals to the spinal cord,” explains Samuel Pfaff, Ph.D, a professor in the Gene Expression Laboratory, who together with former post doctoral fellow Till Marquardt, Ph.D., now a group leader at the European Neuroscience Institute in Göttingen, directed the study. “The motor and sensory nerves are not unlike a roadway with orderly traffic moving in both directions by staying in its proper lanes,” he adds.

... more about:
»Axon »Eph »Ephrin »Ligand »Nerve »Neuron »receptor »sensory »spinal

During embryonic development, nerve cells hesitantly extend tentacle-like protrusions called axons. Growth cones, small enlargements at the axons tip actively search their local environment for chemical cues that guide them to their target. One such cue comes from a class of molecules called ephrins, which repel cells carrying Eph proteins, gently nudging them in the right direction.

The traditional view was that growth cones studded with Eph proteins, which take on the role of receptors, search their environments for ephrins, which take on the role of ligands. During his time as a postdoctoral researcher in Pfaff’s laboratory, Marquardt discovered that neurons not only carry both types of proteins, but that the role of ephrins and Ephs can change as well.

“The fact that neurons can express receptors and ligands and that everything can be a receptor or ligand, raised the question what happens when you have two neurons that grow beside each other and occasionally bump into one another,” says Pfaff. To answer the question, the Salk researchers settled on sensory and motor neurons, which extend their axons along the same pathway to the periphery.

First, co-first authors Benjamin W. Gallarda, and Dario Bonanomi, Ph.D., generated mice that allowed them to genetically distinguish between sensory and motor neurons with different “labels”. With ephrin/Eph signaling intact, their axons joined up after they emerged from the spinal cord but sorted into separate fascicles containing either sensory or motor axons, but never both. When the researchers deleted EphA3 and EphA4 in motor neurons, interrupting the cross talk across the highway divide, things started to go severely wrong.

The sorting between the fascicles of the motor and sensory axons broke down and instead of reaching for muscles, some motor neurons left their lane, made a U-turn, joined the sensory lane and headed back toward the spinal cord. “It was a real wiring disaster,” says Pfaff. “It appears that ephrin and Eph not only control the decision where these axons grow out in the periphery but also maintain the normal arrangement between the motor and sensory pathway.”

The ephrin/Eph tag team not only helps the body’s motor nerve cells grow along their proper paths during embryonic development, it also plays a major role in preventing spinal cord neurons from regenerating after injuries. Hoping to coax injured neurons into rewiring severed connections, researchers in the spinal cord field are hard at work trying to overcome the block that prevents axonal growth within the central nervous system.

“Our findings emphasize that this needs to be done cautiously. If you promote indiscriminate motor axon growth it could cause a lot of problems,” cautions Pfaff. “There are many examples of extensive neuronal reorganization following spinal cord injuries and one often underappreciated byproduct is severe pain.”

Researchers who also contributed to the study include Daniel Müller, Ph.D., a post-doctoral researcher in the Marquardt laboratory, Arthur Brown, Ph.D., associate professor at the University of Western Ontario, Canada, postdoctoral researchers William A. Alaynick, Ph.D., Shane E. Andrews, Ph.D., both in the Pfaff laboratory, and Greg Lemke, professor in the Molecular Neurobiology Laboratory at the Salk.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Axon Eph Ephrin Ligand Nerve Neuron receptor sensory spinal

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>