Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A boost for bamboo-based blouses and blankets

08.04.2008
Rising interest in “sustainable” fabrics is fostering a bamboo boom, in which bamboo-based fabrics are hitting the market as a leading eco-friendly textile.

Chemists in Colorado now are reporting solutions to two major problems with bamboo fabrics that may speed adoption of this amazing plant — which grows like Jack’s beanstalk without special care — in garments and other consumer products.

Reporting at the 235th national meeting of the American Chemical Society, Subhash Appidi and Ajoy Sarkar, Ph.D., from Colorado State University have discovered a way of making bamboo fabric that is resistant to the sun’s damaging ultraviolet (UV) radiation and has anti-bacterial properties.

Widely available in Japan, China, India and other countries, bamboo fabric is soft, durable and elastic. It hangs as gracefully as silk, and has an attractive, lustrous sheen. A leading option in the so-called “ethically produced” clothing market, bamboo is one of the world’s fastest growing plants, reaching maturity in about 3-4 years, compared to 25 to 70 years for commercial tree species in the U.S.

... more about:
»Appidi »antibacterial »bamboo »fabric

“Bamboo is environmentally friendly,” says Appidi. “Pesticides and other agents are necessary to grow most other natural fibers — there is nothing like that in bamboo production.”

But despite bamboo’s promise as an environmentally friendly fiber, Appidi says untreated bamboo fabric has plenty of room for improvement. Raw bamboo fabric lets almost all damaging UV radiation pass through and reach the skin. And while many tout bamboo’s inherent anti-bacterial properties, Appidi found that untreated bamboo fabric did not live up to antimicrobial expectations.

“All cellulose fibers allow more moisture to leak in and provide more food for bacteria to eat. That’s why bacteria grow more on natural fibers rather than synthetic fibers,” says Appidi. The resulting bacterial blooms can lead to unpleasant odors and unsanitary clothing.

For Appidi, creating bacteria-free bamboo garments is a necessity. His goal is to create clothes for use in the medical environment that are nearly 100 percent antibacterial and UV-resistant. Appidi increased the UV-protecting abilities of fabric by coloring pieces of commercially-available bamboo cloth in a dye laced with UV absorbing chemicals. After finding the optimal concentration of absorbing chemicals, he tested UV protection levels.

To improve on the intrinsic antibacterial properties of bamboo, Appidi treated pieces of commercially purchased bamboo fabric with Tinosan —“one of the better antibacterial agents on the market right now,” according to the researcher.

His results showed a 75-80 percent bacterial reduction, a significant improvement over untreated bamboo fabric. There was also a profound increase in UV protection, he said. In terms of “ultraviolet protection factor” (UPF), any value of over 50 is deemed safe against UV rays. Appidi said his treated fabric almost reached 56.

More research may get Appidi’s bamboo fabric in hospitals — and eventually store shelves. He is investigating other antibacterial agents that may help him attain a 99 percent bacterial reduction in bamboo fabric. Insight into the effect of multiple laundry cycles is also necessary, though preliminary findings suggest that the UV and microbial protection remain after washing.

Eventually, Appidi would like to see bamboo fabric become as common in the United States as it is in Asian countries. “There are good prospects for bamboo fabrics in the future,” says Appidi.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Appidi antibacterial bamboo fabric

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>