Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As nanotech goes mainstream, 'toxic socks' raise concerns

08.04.2008
Nanotechnology is now available in a store near you.

Valued for it’s antibacterial and odor-fighting properties, nanoparticle silver is becoming the star attraction in a range of products from socks to bandages to washing machines. But as silver’s benefits propel it to the forefront of consumer nanomaterials, scientists are recommending a closer examination of the unforeseen environmental and health consequences of nanosilver.

“The general public needs to be aware that there are unknown risks associated with the products they buy containing nanomaterials,” researchers Paul Westerhoff and Troy M. Benn said in a report scheduled for the 235th national meeting of the American Chemical Society (ACS).

Westerhoff and Benn report that ordinary laundering can wash off substantial amounts of the nanosilver particles from socks impregnated with the material. The Arizona State researchers suggest that the particles, intended to prevent foot odor, could travel through a wastewater treatment system and enter natural waterways where they might have unwanted effects on aquatic organisms living in the water and possibly humans, too.

“This is the first report of anyone looking at the release of silver from this type of manufactured clothing product,” said the authors.

Behind those concerns lies a very simple experiment. Benn and Westerhoff bought six pairs of name brand anti-odor socks impregnated with nanosilver. They soaked them in a jar of room temperature distilled water, shook the contents for an hour and tested the water for two types of silver — the harmful “ionic” form and the less-studied nanoparticle variety.

“From what we saw, different socks released silver at different rates, suggesting that there may be a manufacturing process that will keep the silver in the socks better,” said Benn. “Some of the sock materials released all of the silver in the first few washings, others gradually released it. Some didn’t release any silver.” The researchers will present the specific brands they studied at their ACS presentation.

If sufficient nanosilver leeches out of these socks and escapes waste water treatment systems into nearby lakes, rivers and streams, it could damage aquatic ecosystems, said Benn. Ionic silver, the dissolved form of the element, does not just attack odor-causing bacteria. It can also hijack chemical processes essential for life in other microbes and aquatic animals.

“If you start releasing ionic silver, it is detrimental to all aquatic biota. Once the silver ions get into the gills of fish, it’s a pretty efficient killer,” said Benn. Ionic silver is only toxic to humans at very high levels. The toxicity of nanoparticle silver, said Westerhoff, has yet to be determined.

Westerhoff and Benn did not intend to establish the toxicity of silver. “The history of silver and silver regulation has been set for decades by the U. S. Environmental Protection Agency — we’re not trying to reexamine or reinvent that,” said Westerhoff.

They do hope to spark a broader examination of the environmental and health consequences of nanomaterials, as well as increasing awareness of nanotechnology’s role in everyday consumer goods.

Silver has been used historically since ancient roman times, though its nanoparticle form has only recently appeared in consumer products. Beyond socks, nanosilver appears in certain bandages, athletic wear and cleaning products. Benn suggested that most consumers are unaware of these nano-additions.

“I’ve spoken with a lot of people who don’t necessarily know what nanotechnology is but they are out there buying products with nanoparticles in them. If the public doesn’t know the possible environmental disadvantages of using these nanomaterials, they cannot make an informed decision on why or why not to buy a product containing nanomaterials,” said Benn.

To that end, the researchers suggest that improved product labeling could help. Westerhoff proposes that clothing labels could become like the back of a food packaging, complete with a list of “ingredients” like nanosilver.

Westerhoff and Benn expect to expand their leeching experiments to other consumer products imbued with nanomaterials. They hope to find the moment in each product’s lifecycle when nanomaterials could be released into the environment, as well as developing better detection methods to characterize nanoparticles in water and air samples.

“Our work suggests that consumer groups need to start thinking about these things,” said Benn. “Should there be other standards for these products"”

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Westerhoff aquatic nanomaterials nanoparticle nanosilver toxic

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>