Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CSHL Scientists Part of Multi-Institution Team That Discovers Role of Rare Gene Mutations in Schizophrenia

Rare mutations disrupt genes in pathways of neuronal development and regulation
Using an important new method that can be applied in the study of other psychiatric illnesses, scientists at Cold Spring Harbor Laboratory (CSHL) in collaboration with colleagues at the University of Washington (UW) and the National Institute of Mental Health (NIMH), have identified multiple, individually rare gene mutations in people with schizophrenia that may help explain how that devastating illness is caused.

The team screened for novel deletions and duplications in the genome -- what are called gene copy-number variations, or CNVs. They found that deletions, disruptions and duplications of normal genes, most of them rare, were three to four times more frequent in people with schizophrenia than in controls.

CSHL’s contribution to the research effort was led by Assistant Professor Jonathan Sebat, Ph.D., and Shane E. McCarthy, Ph.D. Drs. Tom Walsh, Jon McClellan and Mary-Claire King led the UW team, while Drs. Anjene Addington and Judith Rapoport led the researchers at NIMH.

A New Method of Finding Candidate Genes
The researchers used a novel method to study their two-cohort sample, which included 418 individuals, 150 of whom had schizophrenia or schizoaffective disorder. Instead of trying to show a statistical correspondence between a large group of people with schizophrenia and irregularities in common versions of genes, the team began by looking for “glitches” or changes in DNA that are likely to disrupt gene function. Then they compared which genes -- with what kinds of functions -- were impaired, both in the healthy subjects and those with schizophrenia.

The results were striking. Rare mutations showed up in only 5 percent of the healthy controls versus 15 percent of those with schizophrenia. The rate of rare mutation was higher still -- 20 percent -- among an “early-onset” subset of patients, who had developed schizophrenia before age 19.

“This part of our findings indicates something we didn’t know before: that rare structural mutations in genes, while present in both healthy people and people with schizophrenia, are much more likely to occur among people with the illness. This suggests a previously unknown role for rare mutations in the causation of schizophrenia,” said Dr. Sebat.

Rare Mutations and What They Do
The second part of the research aimed to answer a key question about the genes discovered to be irregular: What were their functions? Were their functions similar or different in healthy people versus those with schizophrenia?

Here, too, the results were striking. “In people with schizophrenia, almost half the time the disrupted genes were involved in pathways important in brain development,” Dr. Sebat said. “By contrast, when we looked at the set of genes that were disrupted in healthy people, we found that they were not overrepresented in any particular pathway.”

In a paper that will first appear March 27 in the online edition of Science, the team notes that of 24 rare mutations seen in the schizophrenia group, 11, or 45 percent, affect cellular signaling pathways critical to neuronal cell growth, migration, proliferation, differentiation, apoptosis and synapse formation. Some of the affected pathways have turned up in past studies of schizophrenia, notably those involving signaling in neuregulin, a growth factor, and glutamate, a neurotransmitter.

Implications and Future Studies
While the study, as the scientists directly concede in their paper, “does not prove the involvement with the illness of any specific variant, or even the involvement of any specific gene,” it does, however, indicate a role for rare mutations that disrupt genes in pathways of neuronal development and regulation.

The results are powerful because they link specific structural variation in genes with specific functions known to be important in the early years of life, during which schizophrenia develops in many patients.

This important result leads the scientists to advocate broad use of the method they employed in the study. Gene discovery in complex psychiatric illnesses “should focus on methods that allow detection of structural mutations” across the genome in affected individuals, the team urges.

“Although each mutation discovered may be individually rare,” they maintain, “collectively the total number of disease-causing variants in a gene [found to be] relevant to the disorder may explain a substantial number of cases.”

Dr. Sebat is currently applying the mutation-screening method in studies involving a greater number of patients and in other illnesses. Among other things, he seeks to determine whether spontaneous mutations play as significant a role in schizophrenia as they do in autism, as revealed by a study he co-authored a year ago with CSHL Professor Michael Wigler.

“Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia” appears March 27 in Science online:10.1126/science.1155174. Its citation is as follows: Tom Walsh, Jon M. McClellan, Shane E. McCarthy, Anjene M. Addington, Sarah B. Pierce, Greg M. Cooper, Alex S. Nord, Mary Kusenda, Dheeraj Malhotra, Abishek Bhandari, Sunday M. Stray, Caitlin F. Rippey, Patricia Roccanova, Vlad Makarov, B. Lakshmi, Robert L. Findling, Linmarie Sikich, Thomas Stromberg, Barry Merriman, Nitin Gogtay, Philip Butler, Kristen Eckstrand, Laila Noory, Peter Gochman, Robert Long, Zugen Chen, Sean Davis1, Carl Baker, Evan E. Eichler, Paul S. Meltzer, Stanley F. Nelson, Andrew B. Singleton, Ming K. Lee, Judith L. Rapoport, Mary-Claire King, Jonathan Sebat.

The work in this study was supported by the Forrest C. and Frances H. Lattner Foundation, NARSAD, The National Institute of Mental Health and a gift from Ted and Vada Stanley. Just last year, as a result of the Stanleys’ support, CSHL established the Stanley Center for Psychiatric Genomics.

Cold Spring Harbor Laboratory is a private, non-profit research and education institution dedicated to exploring molecular biology and genetics in order to advance the understanding and ability to diagnose and treat cancers, neurological diseases and other causes of human suffering.

Jim Bono | EurekAlert!
Further information:

Further reports about: CSHL Mutation Rare Sebat schizophrenia

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>