Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL Scientists Part of Multi-Institution Team That Discovers Role of Rare Gene Mutations in Schizophrenia

01.04.2008
Rare mutations disrupt genes in pathways of neuronal development and regulation
Using an important new method that can be applied in the study of other psychiatric illnesses, scientists at Cold Spring Harbor Laboratory (CSHL) in collaboration with colleagues at the University of Washington (UW) and the National Institute of Mental Health (NIMH), have identified multiple, individually rare gene mutations in people with schizophrenia that may help explain how that devastating illness is caused.

The team screened for novel deletions and duplications in the genome -- what are called gene copy-number variations, or CNVs. They found that deletions, disruptions and duplications of normal genes, most of them rare, were three to four times more frequent in people with schizophrenia than in controls.

CSHL’s contribution to the research effort was led by Assistant Professor Jonathan Sebat, Ph.D., and Shane E. McCarthy, Ph.D. Drs. Tom Walsh, Jon McClellan and Mary-Claire King led the UW team, while Drs. Anjene Addington and Judith Rapoport led the researchers at NIMH.

A New Method of Finding Candidate Genes
The researchers used a novel method to study their two-cohort sample, which included 418 individuals, 150 of whom had schizophrenia or schizoaffective disorder. Instead of trying to show a statistical correspondence between a large group of people with schizophrenia and irregularities in common versions of genes, the team began by looking for “glitches” or changes in DNA that are likely to disrupt gene function. Then they compared which genes -- with what kinds of functions -- were impaired, both in the healthy subjects and those with schizophrenia.

The results were striking. Rare mutations showed up in only 5 percent of the healthy controls versus 15 percent of those with schizophrenia. The rate of rare mutation was higher still -- 20 percent -- among an “early-onset” subset of patients, who had developed schizophrenia before age 19.

“This part of our findings indicates something we didn’t know before: that rare structural mutations in genes, while present in both healthy people and people with schizophrenia, are much more likely to occur among people with the illness. This suggests a previously unknown role for rare mutations in the causation of schizophrenia,” said Dr. Sebat.

Rare Mutations and What They Do
The second part of the research aimed to answer a key question about the genes discovered to be irregular: What were their functions? Were their functions similar or different in healthy people versus those with schizophrenia?

Here, too, the results were striking. “In people with schizophrenia, almost half the time the disrupted genes were involved in pathways important in brain development,” Dr. Sebat said. “By contrast, when we looked at the set of genes that were disrupted in healthy people, we found that they were not overrepresented in any particular pathway.”

In a paper that will first appear March 27 in the online edition of Science, the team notes that of 24 rare mutations seen in the schizophrenia group, 11, or 45 percent, affect cellular signaling pathways critical to neuronal cell growth, migration, proliferation, differentiation, apoptosis and synapse formation. Some of the affected pathways have turned up in past studies of schizophrenia, notably those involving signaling in neuregulin, a growth factor, and glutamate, a neurotransmitter.

Implications and Future Studies
While the study, as the scientists directly concede in their paper, “does not prove the involvement with the illness of any specific variant, or even the involvement of any specific gene,” it does, however, indicate a role for rare mutations that disrupt genes in pathways of neuronal development and regulation.

The results are powerful because they link specific structural variation in genes with specific functions known to be important in the early years of life, during which schizophrenia develops in many patients.

This important result leads the scientists to advocate broad use of the method they employed in the study. Gene discovery in complex psychiatric illnesses “should focus on methods that allow detection of structural mutations” across the genome in affected individuals, the team urges.

“Although each mutation discovered may be individually rare,” they maintain, “collectively the total number of disease-causing variants in a gene [found to be] relevant to the disorder may explain a substantial number of cases.”

Dr. Sebat is currently applying the mutation-screening method in studies involving a greater number of patients and in other illnesses. Among other things, he seeks to determine whether spontaneous mutations play as significant a role in schizophrenia as they do in autism, as revealed by a study he co-authored a year ago with CSHL Professor Michael Wigler.
(See: http://www.cshl.edu/public/releases/07_autism.html.)

“Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia” appears March 27 in Science online:10.1126/science.1155174. Its citation is as follows: Tom Walsh, Jon M. McClellan, Shane E. McCarthy, Anjene M. Addington, Sarah B. Pierce, Greg M. Cooper, Alex S. Nord, Mary Kusenda, Dheeraj Malhotra, Abishek Bhandari, Sunday M. Stray, Caitlin F. Rippey, Patricia Roccanova, Vlad Makarov, B. Lakshmi, Robert L. Findling, Linmarie Sikich, Thomas Stromberg, Barry Merriman, Nitin Gogtay, Philip Butler, Kristen Eckstrand, Laila Noory, Peter Gochman, Robert Long, Zugen Chen, Sean Davis1, Carl Baker, Evan E. Eichler, Paul S. Meltzer, Stanley F. Nelson, Andrew B. Singleton, Ming K. Lee, Judith L. Rapoport, Mary-Claire King, Jonathan Sebat.

The work in this study was supported by the Forrest C. and Frances H. Lattner Foundation, NARSAD, The National Institute of Mental Health and a gift from Ted and Vada Stanley. Just last year, as a result of the Stanleys’ support, CSHL established the Stanley Center for Psychiatric Genomics.

Cold Spring Harbor Laboratory is a private, non-profit research and education institution dedicated to exploring molecular biology and genetics in order to advance the understanding and ability to diagnose and treat cancers, neurological diseases and other causes of human suffering.

Jim Bono | EurekAlert!
Further information:
http://www.cshl.edu
http://www.cshl.edu/public/releases/07_pgc.html

Further reports about: CSHL Mutation Rare Sebat schizophrenia

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>