Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteomics on a chip

18.06.2002


‘Golden approach’ human proteine classification
Proteomics on a chip


Knowledge of the human proteome may provide us with even more insight than knowledge of DNA. This ‘protein blueprint’ of a human contains valuable information about cell properties and disease causes. A single cell, however, already consists of several thousands of proteines. To be able to classify them, dr. Richard Schasfoort of the University of Twente is developing a special chip, able to make hundreds or thousands proteine analyses at the same time. For his ‘out-of-the-ordinary’ ideas, he got the Dutch Innovation impulse last year. Important steps have been made already, in the development of a chip for patient monitoring of prostate cancer, using the same proteine analysis technique. In his new Biochip research group at UT, starting July 1st, Schasfoort is extending this concept towards use in proteomics.


The blueprint of an organism can be found in the proteome, the total ‘package’ of proteins being expressed within this organism. Not all proteins are in a direct way linked to DNA, they interact themselves. Finding the protein pattern – each cell has about 10000 proteins, of which several thousands are unknown - is a new race, providing more information than the DNA-map. The Human Proteome Organisation (HUPO) faces the challenge of identifying over 300.000 proteines.

Gold

There are techniques for this, Schasfoort admits. But for these amounts of data, they are very time-consuming: they are in fact based on visual recognition of proteines and selecting the interesting ones with a kind of chemical ‘pair of tweezers’. Schasfoort is convinced of the need for a new approach: he proposes a combination of ‘microfluidics’ and a detection technique called Surface Plasmon Resonance imaging (SPR). In this way, he wants to build a complete lab on a chip, for imaging of hundreds or thousands of proteines at the same time. On the chip, a separation technique splits the proteome in individual proteins. They ‘land’ on tiny gold surfaces, specially prepared for capturing the proteines: one proteine on every gold. Caused by the interaction, a change in refractive index is induced: in this way optical detection is possible. A laser scans all the golden rectangles with proteines on them, and a camera makes an image of the proteine pattern.

Schasfoort’s new Biochip group is part of the chair of Biophysical Techniques, faculty of Applied Physics, University of Twente. In this group, Schasfoort wants to develop a complete integrated system. For this idea, NWO the Dutch organisation for scientific research, granted him with the ‘Vernieuwingsimpuls’, about 700 thousand euro for a period of five years. Schasfoort doesn’t start ‘from scratch’: he already developed the basic components, for a prostate cancer monitoring system using the same technique SPR. This is done in a EU-project to be finished in approx half a year. In the project, directed by IMEC in Belgium, detection of the cancer-specific proteine in blood is possible, in quantities of less than a tenth of a nanogram per millilitre. All handling and separation of fluids is done on the same chip. The laser and the camera can be made very small as well.

Dr. Richard Schasfoort (43), chemical engineer, developed large-scale industrial SPR systems before, in a company called Ibis Technologies. After getting acquainted with microfluidics in the group of Albert van den Berg (MESA+), he decided to combine best of both worlds. The power of the ‘lab-on-a-chip’ concept was already seen in the human genome project, when analysis chips became commercially available. Schasfoort starts with a group of six scientists and technicians.

Wiebe van der Veen | alfa

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>