Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteomics on a chip

18.06.2002


‘Golden approach’ human proteine classification
Proteomics on a chip


Knowledge of the human proteome may provide us with even more insight than knowledge of DNA. This ‘protein blueprint’ of a human contains valuable information about cell properties and disease causes. A single cell, however, already consists of several thousands of proteines. To be able to classify them, dr. Richard Schasfoort of the University of Twente is developing a special chip, able to make hundreds or thousands proteine analyses at the same time. For his ‘out-of-the-ordinary’ ideas, he got the Dutch Innovation impulse last year. Important steps have been made already, in the development of a chip for patient monitoring of prostate cancer, using the same proteine analysis technique. In his new Biochip research group at UT, starting July 1st, Schasfoort is extending this concept towards use in proteomics.


The blueprint of an organism can be found in the proteome, the total ‘package’ of proteins being expressed within this organism. Not all proteins are in a direct way linked to DNA, they interact themselves. Finding the protein pattern – each cell has about 10000 proteins, of which several thousands are unknown - is a new race, providing more information than the DNA-map. The Human Proteome Organisation (HUPO) faces the challenge of identifying over 300.000 proteines.

Gold

There are techniques for this, Schasfoort admits. But for these amounts of data, they are very time-consuming: they are in fact based on visual recognition of proteines and selecting the interesting ones with a kind of chemical ‘pair of tweezers’. Schasfoort is convinced of the need for a new approach: he proposes a combination of ‘microfluidics’ and a detection technique called Surface Plasmon Resonance imaging (SPR). In this way, he wants to build a complete lab on a chip, for imaging of hundreds or thousands of proteines at the same time. On the chip, a separation technique splits the proteome in individual proteins. They ‘land’ on tiny gold surfaces, specially prepared for capturing the proteines: one proteine on every gold. Caused by the interaction, a change in refractive index is induced: in this way optical detection is possible. A laser scans all the golden rectangles with proteines on them, and a camera makes an image of the proteine pattern.

Schasfoort’s new Biochip group is part of the chair of Biophysical Techniques, faculty of Applied Physics, University of Twente. In this group, Schasfoort wants to develop a complete integrated system. For this idea, NWO the Dutch organisation for scientific research, granted him with the ‘Vernieuwingsimpuls’, about 700 thousand euro for a period of five years. Schasfoort doesn’t start ‘from scratch’: he already developed the basic components, for a prostate cancer monitoring system using the same technique SPR. This is done in a EU-project to be finished in approx half a year. In the project, directed by IMEC in Belgium, detection of the cancer-specific proteine in blood is possible, in quantities of less than a tenth of a nanogram per millilitre. All handling and separation of fluids is done on the same chip. The laser and the camera can be made very small as well.

Dr. Richard Schasfoort (43), chemical engineer, developed large-scale industrial SPR systems before, in a company called Ibis Technologies. After getting acquainted with microfluidics in the group of Albert van den Berg (MESA+), he decided to combine best of both worlds. The power of the ‘lab-on-a-chip’ concept was already seen in the human genome project, when analysis chips became commercially available. Schasfoort starts with a group of six scientists and technicians.

Wiebe van der Veen | alfa

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>