Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly genetic disease prevented before birth in zebrafish

25.03.2008
Finding offers potential for helping humans

By injecting a customized "genetic patch" into early stage fish embryos, researchers at Washington University School of Medicine in St. Louis were able to correct a genetic mutation so the embryos developed normally.

The research could lead to the prevention of up to one-fifth of birth defects in humans caused by genetic mutations, according to the authors.

Erik C. Madsen, first author and an M.D./Ph.D. student in the Medical Scientist Training Program at Washington University School of Medicine, made the groundbreaking discovery using a zebrafish model of Menkes disease, a rare, inherited disorder of copper metabolism caused by a mutation in the human version of the ATP7A gene. Zebrafish are vertebrates that develop similarly to humans, and their transparency allows researchers to observe embryonic development.

... more about:
»Genetic »Madsen »Menkes »Mutation »Treatment »copper »morpholino

Children who have Menkes disease have seizures, extensive neurodegeneration in the gray matter of the brain, abnormal bone development and kinky, colorless hair. Most children with Menkes die before age 10, and treatment with copper is largely ineffective.

The research is published this month in the Proceedings of the National Academy of Sciences' advance online edition.

The development of organs in the fetus is nearly complete at a very early stage. By that time, the mutation causing Menkes disease has already affected brain and nerve development.

Madsen and Bryce Mendelsohn, also an M.D./Ph.D. student at the School of Medicine, wondered if they could prevent the Menkes-like disease in zebrafish by correcting genetic mutations that impair copper metabolism during the brief period in which organs develop. Both students work in the lab of Jonathan D. Gitlin, M.D., the Helene B. Roberson Professor of Pediatrics at the School of Medicine and director of Genetics and Genomic Medicine at St. Louis Children's Hospital.

The researchers used zebrafish with two different mutations in the ATP7A gene, resulting in a disease in the fish that has many of the same characteristics of the human Menkes disease. Madsen designed a specific therapy to correct each mutation with morpholinos, synthetic molecules that modify gene expression. The zebrafish embryos were injected with the customized therapy during the critical window of development, and the researchers found that the zebrafish hatched and grew without any discernable defects.

"This method of copper delivery suggests that the prevention of the neurodegenerative features in Menkes disease in children may be possible with therapeutic interventions that correct the genetic defect within a specific developmental window," Madsen said.

The genetic mutations Madsen and the researchers worked with are caused by splicing defects, or an interruption in genetic code. The morpholinos prevent that interruption by patching over the defect so the gene can generate its normal product.

"Consider the genetic code as a book, and someone has put in random letters or gibberish in the middle of the book," Madsen said. "To be able to read the book, you have to ignore the gibberish. If we can make cells ignore the gibberish, or the splicing defect, the fetus can develop normally."

Up to 20 percent of genetic diseases are caused by splicing defects, Madsen said, so this treatment method could potentially be used for many other genetic diseases.

"The idea is that we can modify the treatment to target a specific mutation and design molecules to alter gene function in the same way the morpholino oligonucleotides can," Gitlin said.

The work is an important step toward personalized medicine, which can tailor treatment to an individual's genetic makeup.

"Eventually we would like to know each person's genome sequence so we know what mutations each person has that may lead to disease," Gitlin said. "That way, you don't get a drug for cancer that works against any kind of cancer, you get a drug for the specific mutation that causes your cancer. That's what personalized medicine is all about."

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Genetic Madsen Menkes Mutation Treatment copper morpholino

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>