Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research could put penicillin back in battle against antibiotic resistant bugs that kill millions

Research led by the University of Warwick has uncovered exactly how the bacterium Streptococcus pneumoniae has become resistant to the antibiotic penicillin. The same research could also open up MRSA to attack by penicillin and help create a library of designer antibiotics to use against a range of other dangerous bacteria.

Worldwide Streptococcus pneumoniae causes 5 million fatal pneumonia infections a year in children. In the US it causes 1 million cases a year of pneumococcal pneumonia in the elderly of which up to 7% are fatal. This new research has completely exposed how Streptococcus pneumoniae builds its penicillin immunity and opens up many ways to disrupt that mechanism and restore penicillin as a weapon against these bacteria.

The research was led by Dr Adrian Lloyd of the University of Warwick’s Department of Biological Sciences along with other colleagues from the University of Warwick, the Université Laval, Ste-Foy in Quebec, and The Rockefeller University in New York. The research was funded by Welcome Trust and the MRC.

Penicillin normally acts by preventing the construction of an essential component of the bacterial cell wall: the Peptidoglycan. This component provides a protective mesh around the otherwise fragile bacterial cell, providing the mechanical support and stability required for the integrity and viability of cells of Streptococcus pneumoniae and other bacteria including MRSA.

The researchers targeted a protein called MurM that is essential for clinically observed penicillin resistance and has also been linked to changes in the chemical make up of the peptidoglycan that appear in penicillin resistant Streptococcus pneumoniae isolated from patients with pneumococcal infections.

The researchers found that MurM acted as an enzyme that was key to the formation of particular structures within the S. pneumoniae peptidoglycan called dipeptide bridges that link together strands of the peptidoglycan mesh that contributes to the bacterial cell wall. The presence of high levels of these dipeptide bridges in the peptidoglycan of Streptococcus pneumoniae is a pre-requisite for high level penicillin resistance.

The Warwick team were able to replicate the activity of MurM in a test tube, allowing them to define the chemistry of the MurM reaction in detail and understand every key step of how Streptococcus pneumoniae deploys MurM to gain this resistance.

The results will allow the Warwick team, and any interested pharmaceutical researchers, to target the MurM reaction in Streptococcus pneumoniae in a way which will lead to the development of drugs which will disrupt the resistance of Streptococcus pneumoniae to penicillin.

The same research also offers exciting possibilities to disrupt the antibiotic resistance of MRSA which uses similarly constructed peptide bridges in the construction of the peptidoglycan component of its cell wall. Therefore, thanks to this research, even MRSA could now be opened up to treatment by penicillin.

A further spin-off from this new MurM research, is that the Warwick led researchers are also able to readily reproduce every precursor step the bacterial cell uses to create its peptidoglycan. The tools developed at Warwick open up each step of the creation of the peptidoglycan (MurA, MurB, MurC etc, etc) used by an array of dangerous bacteria. This provides a valuable collection of targets for pharmaceutical companies seeking ways of disrupting antibiotic resistance in such bacteria.

The University of Warwick part of the research team have now established a new network of academics from the fields of chemistry, biology and medicine, as well as pharmaceutical companies to share and exploit this new treasure trove of targets which could help create a range of new designer antibiotic based treatments targeted at a range of bacteria that can cause significant health problems.

This network is the UK Bacterial Cell Wall Biosynthesis Network or UK-BaCWAN and it is supported by the Medical Research Council of the UK. The network web site is

Peter Dunn | alfa
Further information:

Further reports about: MRSA MurM Penicillin Streptococcus cause peptidoglycan pneumonia resistance resistant

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>