Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists surprised to find parochial bacterial viruses

06.03.2008
Intriguing find reveals more mysteries from Mexico's Cuatro Cienegas

Biologists examining ecosystems similar to those that existed on Earth more than 3 billion years ago have made a surprising discovery: Viruses that infect bacteria are sometimes parochial and unrelated to their counterparts in other regions of the globe.

The finding, published online this week by the journal Nature, is surprising because bacteria are ubiquitous on Earth. They've been found from the upper reaches of the atmosphere to miles below the ocean floor. Because of their ubiquity, scientists have long believed bacteria to be cosmopolitan, having similar genetic histories across the globe. The same was also believed to be true for phages, the viruses that infect bacteria.

"The idea that things in the microbial world can have endemic properties is relatively new," said study co-author Janet Siefert, a Rice University computational biologist who has made a half-dozen trips to one of the study sites in Mexico's remote Cuatro Ciénegas valley. "People really weren't talking about it until about a decade ago, and we certainly didn't expect to find this when we began our work in Mexico."

... more about:
»Ciénegas »Cuatro »DNA »Database »metagenome »phage »pozas

Bacteria are the dominant forms of life on Earth. They helped shape the planet's land, oceans and atmosphere for 3 billion years before the first appearance of multicellular creatures. Siefert and several of her co-authors began traveling to Cuatro Ciénegas in Mexico's Chihuahuan Desert in 2004 to study cyanobacteria living in a network of more than 200 spring-fed pools, or “pozas.” Cuatro Ciénegas' pozas have been compared to the Galapagos Islands, except that their endemic species -- at least 70 species in the valley are found nowhere else on Earth -- are separated from the rest of the world by mountains and a sea of sand rather than an ocean.

The cyanobacteria in the pozas live communally, forming coral-like structures called "stromatolites," or microbialites, that are geologically identical to 3.5 billion-year-old fossils that are believed to be the oldest evidence of life on Earth.

"We had very little funding when we started going to Cuatro Ciénegas," Siefert said. "We were taking a shot in the dark to see if we could better understand the physical, chemical and geological context of the bacterial communities and the stromatolites."

The work drew interest and seed funding from NASA's astrobiology program, which hoped the work might provide important clues about the way early life might develop on other planets.

Siefert said biogeography -- the study of species’ biodiversity and distribution across time and space -- has only recently been possible for viruses, mainly due to advancements in software and other computer tools. New sequencing technologies made it possible to analyze and geographically map the genetic differences among viral genotypes in Cuatro Ciénegas and other locations. The new study's findings contrast with previous studies that found viruses are widely dispersed on Earth and share almost the same genotypes.

Stromatolite samples collected from two pozas in 2004 were examined by several co-authors in the research group of San Diego State University biologist Forest Rohwer, who has prepared the world's largest database of phage DNA. In the first step of the tests, researchers crushed small bits of the coral-like stromatolites and extracted DNA from the samples. The DNA from each sample was decoded and compiled into a database called a "metagenome." The metagenomes from the Mexican pozas were compared with each other and with metagenomes from stromatilites in Highborne Cay, Bahamas. Finally, all three of these metagenomes were compared with Rohwer's phage database and with several large gene-sequence databases, like GenBank.

"Taken together, these results prove that viruses in modern microbialites display the variability of distribution of organisms on our planet," Rohwer said. "It also suggests that they may be derived from an ancient, microbial community."

The analyses found that the phages in the Bahamas and in both Mexican pozas shared only about 5 percent of the same DNA sequences. Moreover, the analyses revealed that the Mexican phages appeared to have evolved from ancient, ocean-going relatives. Siefert said the finding is amazing given that Cuatro Ciénegas has been cut off from the ocean for about 100 million years, but it complements prior findings of marine genetic signatures in some of Cuatro Ciénegas' other endemic species.

"Over that length of time, we would expect the marine signature to get washed out of the genetic code," she said. "In fact, when we compared the phages from the pozas to oceanic phages, we found cases where the pozas' phages were more closely related to marine relatives than were some of the phages found in other oceans."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Ciénegas Cuatro DNA Database metagenome phage pozas

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>