Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists surprised to find parochial bacterial viruses

06.03.2008
Intriguing find reveals more mysteries from Mexico's Cuatro Cienegas

Biologists examining ecosystems similar to those that existed on Earth more than 3 billion years ago have made a surprising discovery: Viruses that infect bacteria are sometimes parochial and unrelated to their counterparts in other regions of the globe.

The finding, published online this week by the journal Nature, is surprising because bacteria are ubiquitous on Earth. They've been found from the upper reaches of the atmosphere to miles below the ocean floor. Because of their ubiquity, scientists have long believed bacteria to be cosmopolitan, having similar genetic histories across the globe. The same was also believed to be true for phages, the viruses that infect bacteria.

"The idea that things in the microbial world can have endemic properties is relatively new," said study co-author Janet Siefert, a Rice University computational biologist who has made a half-dozen trips to one of the study sites in Mexico's remote Cuatro Ciénegas valley. "People really weren't talking about it until about a decade ago, and we certainly didn't expect to find this when we began our work in Mexico."

... more about:
»Ciénegas »Cuatro »DNA »Database »metagenome »phage »pozas

Bacteria are the dominant forms of life on Earth. They helped shape the planet's land, oceans and atmosphere for 3 billion years before the first appearance of multicellular creatures. Siefert and several of her co-authors began traveling to Cuatro Ciénegas in Mexico's Chihuahuan Desert in 2004 to study cyanobacteria living in a network of more than 200 spring-fed pools, or “pozas.” Cuatro Ciénegas' pozas have been compared to the Galapagos Islands, except that their endemic species -- at least 70 species in the valley are found nowhere else on Earth -- are separated from the rest of the world by mountains and a sea of sand rather than an ocean.

The cyanobacteria in the pozas live communally, forming coral-like structures called "stromatolites," or microbialites, that are geologically identical to 3.5 billion-year-old fossils that are believed to be the oldest evidence of life on Earth.

"We had very little funding when we started going to Cuatro Ciénegas," Siefert said. "We were taking a shot in the dark to see if we could better understand the physical, chemical and geological context of the bacterial communities and the stromatolites."

The work drew interest and seed funding from NASA's astrobiology program, which hoped the work might provide important clues about the way early life might develop on other planets.

Siefert said biogeography -- the study of species’ biodiversity and distribution across time and space -- has only recently been possible for viruses, mainly due to advancements in software and other computer tools. New sequencing technologies made it possible to analyze and geographically map the genetic differences among viral genotypes in Cuatro Ciénegas and other locations. The new study's findings contrast with previous studies that found viruses are widely dispersed on Earth and share almost the same genotypes.

Stromatolite samples collected from two pozas in 2004 were examined by several co-authors in the research group of San Diego State University biologist Forest Rohwer, who has prepared the world's largest database of phage DNA. In the first step of the tests, researchers crushed small bits of the coral-like stromatolites and extracted DNA from the samples. The DNA from each sample was decoded and compiled into a database called a "metagenome." The metagenomes from the Mexican pozas were compared with each other and with metagenomes from stromatilites in Highborne Cay, Bahamas. Finally, all three of these metagenomes were compared with Rohwer's phage database and with several large gene-sequence databases, like GenBank.

"Taken together, these results prove that viruses in modern microbialites display the variability of distribution of organisms on our planet," Rohwer said. "It also suggests that they may be derived from an ancient, microbial community."

The analyses found that the phages in the Bahamas and in both Mexican pozas shared only about 5 percent of the same DNA sequences. Moreover, the analyses revealed that the Mexican phages appeared to have evolved from ancient, ocean-going relatives. Siefert said the finding is amazing given that Cuatro Ciénegas has been cut off from the ocean for about 100 million years, but it complements prior findings of marine genetic signatures in some of Cuatro Ciénegas' other endemic species.

"Over that length of time, we would expect the marine signature to get washed out of the genetic code," she said. "In fact, when we compared the phages from the pozas to oceanic phages, we found cases where the pozas' phages were more closely related to marine relatives than were some of the phages found in other oceans."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Ciénegas Cuatro DNA Database metagenome phage pozas

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>