Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New revelations in epigenetic control shed light on breast cancer

06.03.2008
Scientists discover that long-term regulation of the human genome is much more dynamic than assumed

Epigenetic regulation – modifications to the structure of chromatin that influence which genes are expressed in a cell – is a key player in embryonic development and cancer formation. Researchers at the European Molecular Biology Laboratory [EMBL] in Heidelberg now gained new insight into one crucial epigenetic mechanism and reveal that it acts much faster than assumed.

In this week's issue of Nature they report that estrogen causes rapid epigenetic changes in breast cancer cells. The new findings impact upon our understanding of how cells interpret their DNA and suggest that epigenetic regulation can affect gene expression immediately and long-term.

Epigenetic changes to the structure of chromatin – tightly packaged DNA - grant or deny access to the molecular machinery that transcribes DNA and thereby regulate gene expression. One of these mechanisms is DNA methylation, where a small chemical residue called a methyl group is added to strategic bases on the DNA. The methyl group prevents the transcription machinery from docking and thereby shuts down gene expression. For a long time scientists have considered methylation a mechanism of long-term regulation of a gene's activity, because the methylation marks are stable and maintained through cellular replication.

EMBL researchers of the group of Frank Gannon, current director of the Science Foundation Ireland, now found out that methylation marks occur rapidly in breast cancer cells in response to hormones such as estrogen or drug compounds. Estrogen withdrawal or treatment with the established anticancer drug doxorubicin cause the methyl groups to be removed from regulatory regions of specific genes within tens of minutes in human breast cancer cells. The treatment sets off a whole cycle of events: initial demethylation renders silent genes active and subsequent remethylation shuts them down again. This cycle repeats itself every 1.5 hours.

"We observed that unlike assumed for a long time methylation can act on a very short timescale. The results challenge our understanding of epigenetics as a means to regulate gene expression permanently," says Sara Kangaspeska, who carried out the research together with Brenda Stride.

The new insights into the cyclical nature of methylation might shed light on the molecular bases of cancer and development, both processes involving epigenetic mechanisms.

"In particular breast cancer is affected by estrogen signalling and changes in epigenetic control," says George Reid, co-senior author of the study. "Our next step will be to find small molecules that target the cyclical methylation processes to elucidate their precise role."

Published in Nature on 6 March 2008.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2008/06mar08/index.html

Further reports about: DNA Regulation breast cancer epigenetic methyl methylation

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>