Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New revelations in epigenetic control shed light on breast cancer

06.03.2008
Scientists discover that long-term regulation of the human genome is much more dynamic than assumed

Epigenetic regulation – modifications to the structure of chromatin that influence which genes are expressed in a cell – is a key player in embryonic development and cancer formation. Researchers at the European Molecular Biology Laboratory [EMBL] in Heidelberg now gained new insight into one crucial epigenetic mechanism and reveal that it acts much faster than assumed.

In this week's issue of Nature they report that estrogen causes rapid epigenetic changes in breast cancer cells. The new findings impact upon our understanding of how cells interpret their DNA and suggest that epigenetic regulation can affect gene expression immediately and long-term.

Epigenetic changes to the structure of chromatin – tightly packaged DNA - grant or deny access to the molecular machinery that transcribes DNA and thereby regulate gene expression. One of these mechanisms is DNA methylation, where a small chemical residue called a methyl group is added to strategic bases on the DNA. The methyl group prevents the transcription machinery from docking and thereby shuts down gene expression. For a long time scientists have considered methylation a mechanism of long-term regulation of a gene's activity, because the methylation marks are stable and maintained through cellular replication.

EMBL researchers of the group of Frank Gannon, current director of the Science Foundation Ireland, now found out that methylation marks occur rapidly in breast cancer cells in response to hormones such as estrogen or drug compounds. Estrogen withdrawal or treatment with the established anticancer drug doxorubicin cause the methyl groups to be removed from regulatory regions of specific genes within tens of minutes in human breast cancer cells. The treatment sets off a whole cycle of events: initial demethylation renders silent genes active and subsequent remethylation shuts them down again. This cycle repeats itself every 1.5 hours.

"We observed that unlike assumed for a long time methylation can act on a very short timescale. The results challenge our understanding of epigenetics as a means to regulate gene expression permanently," says Sara Kangaspeska, who carried out the research together with Brenda Stride.

The new insights into the cyclical nature of methylation might shed light on the molecular bases of cancer and development, both processes involving epigenetic mechanisms.

"In particular breast cancer is affected by estrogen signalling and changes in epigenetic control," says George Reid, co-senior author of the study. "Our next step will be to find small molecules that target the cyclical methylation processes to elucidate their precise role."

Published in Nature on 6 March 2008.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2008/06mar08/index.html

Further reports about: DNA Regulation breast cancer epigenetic methyl methylation

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>