Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out-of-whack protein may boost Parkinson's

28.02.2008
A single change in a protein may play a role in whether someone develops Parkinson’s disease, say University of Florida Genetics Institute researchers writing in a recent issue of the Proceedings of the National Academy of Sciences.

Scientists studying rats induced to display a form of Parkinson’s disease discovered that a protein commonly found in brain cells can be toxic if — at one pinpoint location in its amino acid structure — it lacks a chemical compound called a phosphate.

When scientists used gene therapy to simulate a phosphate at this critical position, the rats’ brain cells didn’t develop the Parkinson-like pathology that would normally occur.

The finding provides new insight into the fundamentals of Parkinson’s disease and the role of an abundant yet mysterious brain protein known as alpha-synuclein, which is believed to help brain cells communicate but may have a more sinister role in the development of neurological diseases.

... more about:
»Alpha-Synuclein »Genetic »Parkinson

“We have another potential target for therapy, but there is a great deal left to discover,” said Nicholas Muzyczka, Ph.D., a professor of molecular genetics and microbiology in the College of Medicine and an eminent scholar with the UF Genetics Institute. “This is one more piece of information about what might be causing the toxicity in Parkinson’s disease, and it gives us a little more to go on about what alpha-synuclein does in the brain.”

Generally located at the synapses of nerve cells, alpha-synuclein is believed to aid in brain function, possibly by helping cells communicate with one another by controlling the release of neurotransmitters such as dopamine.

Mutations of alpha-synuclein may cause a rare, inherited form of Parkinson’s, and the protein has been found to be the major component of Lewy bodies, which are abnormal clusters of protein in the brain cells of patients with Parkinson’s disease.

The National Parkinson Foundation estimates 1.5 million Americans currently have Parkinson’s disease and about 60,000 new cases are diagnosed each year. It is caused by the death or impairment of certain nerve cells in a part of the brain called the substantia nigra. When these cells die, the body is deprived of dopamine, a neurotransmitter vital for movement.

“We know of several enzymes that can cause phosphorylation in the proper position of the alpha-synuclein protein,” said Oleg Gorbatyuk, Ph.D., an assistant professor of molecular genetics and microbiology. “Increasing their expression in brains afflicted with Parkinson’s disease could possibly provide a gene therapy approach to the disease.”

In experiments described in the Jan. 15 issue of PNAS, UF researchers used gene transfer to enhance the production of three versions of alpha-synuclein in the substantia nigra region on one side of the rats’ brains. The other side was not treated, for comparison purposes.

Of the types of alpha-synuclein, the one that simulated phosphorylation at position 129 of the protein was nontoxic. But the other versions of the protein all caused significant loss of dopamine neurons in the substantia nigra.

“Adding a phosphate group is about the smallest thing that can possibly happen in biology,” said Mark R. Cookson, an investigator in the Cell Biology and Gene Expression Unit of the National Institute on Aging who was not involved in the research. “But this relatively minor, innocuous change can switch everything around from being a big problem to being no problem. This research really gives us an idea of some things going on in inherited cases of Parkinson’s disease, and if we use that genetic information as a handle to get into the common disease, it is possible to take this from genetics to a drug discovery program.”

John D. Pastor | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Alpha-Synuclein Genetic Parkinson

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>