Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out-of-whack protein may boost Parkinson's

28.02.2008
A single change in a protein may play a role in whether someone develops Parkinson’s disease, say University of Florida Genetics Institute researchers writing in a recent issue of the Proceedings of the National Academy of Sciences.

Scientists studying rats induced to display a form of Parkinson’s disease discovered that a protein commonly found in brain cells can be toxic if — at one pinpoint location in its amino acid structure — it lacks a chemical compound called a phosphate.

When scientists used gene therapy to simulate a phosphate at this critical position, the rats’ brain cells didn’t develop the Parkinson-like pathology that would normally occur.

The finding provides new insight into the fundamentals of Parkinson’s disease and the role of an abundant yet mysterious brain protein known as alpha-synuclein, which is believed to help brain cells communicate but may have a more sinister role in the development of neurological diseases.

... more about:
»Alpha-Synuclein »Genetic »Parkinson

“We have another potential target for therapy, but there is a great deal left to discover,” said Nicholas Muzyczka, Ph.D., a professor of molecular genetics and microbiology in the College of Medicine and an eminent scholar with the UF Genetics Institute. “This is one more piece of information about what might be causing the toxicity in Parkinson’s disease, and it gives us a little more to go on about what alpha-synuclein does in the brain.”

Generally located at the synapses of nerve cells, alpha-synuclein is believed to aid in brain function, possibly by helping cells communicate with one another by controlling the release of neurotransmitters such as dopamine.

Mutations of alpha-synuclein may cause a rare, inherited form of Parkinson’s, and the protein has been found to be the major component of Lewy bodies, which are abnormal clusters of protein in the brain cells of patients with Parkinson’s disease.

The National Parkinson Foundation estimates 1.5 million Americans currently have Parkinson’s disease and about 60,000 new cases are diagnosed each year. It is caused by the death or impairment of certain nerve cells in a part of the brain called the substantia nigra. When these cells die, the body is deprived of dopamine, a neurotransmitter vital for movement.

“We know of several enzymes that can cause phosphorylation in the proper position of the alpha-synuclein protein,” said Oleg Gorbatyuk, Ph.D., an assistant professor of molecular genetics and microbiology. “Increasing their expression in brains afflicted with Parkinson’s disease could possibly provide a gene therapy approach to the disease.”

In experiments described in the Jan. 15 issue of PNAS, UF researchers used gene transfer to enhance the production of three versions of alpha-synuclein in the substantia nigra region on one side of the rats’ brains. The other side was not treated, for comparison purposes.

Of the types of alpha-synuclein, the one that simulated phosphorylation at position 129 of the protein was nontoxic. But the other versions of the protein all caused significant loss of dopamine neurons in the substantia nigra.

“Adding a phosphate group is about the smallest thing that can possibly happen in biology,” said Mark R. Cookson, an investigator in the Cell Biology and Gene Expression Unit of the National Institute on Aging who was not involved in the research. “But this relatively minor, innocuous change can switch everything around from being a big problem to being no problem. This research really gives us an idea of some things going on in inherited cases of Parkinson’s disease, and if we use that genetic information as a handle to get into the common disease, it is possible to take this from genetics to a drug discovery program.”

John D. Pastor | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Alpha-Synuclein Genetic Parkinson

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>