Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out-of-whack protein may boost Parkinson's

28.02.2008
A single change in a protein may play a role in whether someone develops Parkinson’s disease, say University of Florida Genetics Institute researchers writing in a recent issue of the Proceedings of the National Academy of Sciences.

Scientists studying rats induced to display a form of Parkinson’s disease discovered that a protein commonly found in brain cells can be toxic if — at one pinpoint location in its amino acid structure — it lacks a chemical compound called a phosphate.

When scientists used gene therapy to simulate a phosphate at this critical position, the rats’ brain cells didn’t develop the Parkinson-like pathology that would normally occur.

The finding provides new insight into the fundamentals of Parkinson’s disease and the role of an abundant yet mysterious brain protein known as alpha-synuclein, which is believed to help brain cells communicate but may have a more sinister role in the development of neurological diseases.

... more about:
»Alpha-Synuclein »Genetic »Parkinson

“We have another potential target for therapy, but there is a great deal left to discover,” said Nicholas Muzyczka, Ph.D., a professor of molecular genetics and microbiology in the College of Medicine and an eminent scholar with the UF Genetics Institute. “This is one more piece of information about what might be causing the toxicity in Parkinson’s disease, and it gives us a little more to go on about what alpha-synuclein does in the brain.”

Generally located at the synapses of nerve cells, alpha-synuclein is believed to aid in brain function, possibly by helping cells communicate with one another by controlling the release of neurotransmitters such as dopamine.

Mutations of alpha-synuclein may cause a rare, inherited form of Parkinson’s, and the protein has been found to be the major component of Lewy bodies, which are abnormal clusters of protein in the brain cells of patients with Parkinson’s disease.

The National Parkinson Foundation estimates 1.5 million Americans currently have Parkinson’s disease and about 60,000 new cases are diagnosed each year. It is caused by the death or impairment of certain nerve cells in a part of the brain called the substantia nigra. When these cells die, the body is deprived of dopamine, a neurotransmitter vital for movement.

“We know of several enzymes that can cause phosphorylation in the proper position of the alpha-synuclein protein,” said Oleg Gorbatyuk, Ph.D., an assistant professor of molecular genetics and microbiology. “Increasing their expression in brains afflicted with Parkinson’s disease could possibly provide a gene therapy approach to the disease.”

In experiments described in the Jan. 15 issue of PNAS, UF researchers used gene transfer to enhance the production of three versions of alpha-synuclein in the substantia nigra region on one side of the rats’ brains. The other side was not treated, for comparison purposes.

Of the types of alpha-synuclein, the one that simulated phosphorylation at position 129 of the protein was nontoxic. But the other versions of the protein all caused significant loss of dopamine neurons in the substantia nigra.

“Adding a phosphate group is about the smallest thing that can possibly happen in biology,” said Mark R. Cookson, an investigator in the Cell Biology and Gene Expression Unit of the National Institute on Aging who was not involved in the research. “But this relatively minor, innocuous change can switch everything around from being a big problem to being no problem. This research really gives us an idea of some things going on in inherited cases of Parkinson’s disease, and if we use that genetic information as a handle to get into the common disease, it is possible to take this from genetics to a drug discovery program.”

John D. Pastor | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Alpha-Synuclein Genetic Parkinson

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>