Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out-of-whack protein may boost Parkinson's

28.02.2008
A single change in a protein may play a role in whether someone develops Parkinson’s disease, say University of Florida Genetics Institute researchers writing in a recent issue of the Proceedings of the National Academy of Sciences.

Scientists studying rats induced to display a form of Parkinson’s disease discovered that a protein commonly found in brain cells can be toxic if — at one pinpoint location in its amino acid structure — it lacks a chemical compound called a phosphate.

When scientists used gene therapy to simulate a phosphate at this critical position, the rats’ brain cells didn’t develop the Parkinson-like pathology that would normally occur.

The finding provides new insight into the fundamentals of Parkinson’s disease and the role of an abundant yet mysterious brain protein known as alpha-synuclein, which is believed to help brain cells communicate but may have a more sinister role in the development of neurological diseases.

... more about:
»Alpha-Synuclein »Genetic »Parkinson

“We have another potential target for therapy, but there is a great deal left to discover,” said Nicholas Muzyczka, Ph.D., a professor of molecular genetics and microbiology in the College of Medicine and an eminent scholar with the UF Genetics Institute. “This is one more piece of information about what might be causing the toxicity in Parkinson’s disease, and it gives us a little more to go on about what alpha-synuclein does in the brain.”

Generally located at the synapses of nerve cells, alpha-synuclein is believed to aid in brain function, possibly by helping cells communicate with one another by controlling the release of neurotransmitters such as dopamine.

Mutations of alpha-synuclein may cause a rare, inherited form of Parkinson’s, and the protein has been found to be the major component of Lewy bodies, which are abnormal clusters of protein in the brain cells of patients with Parkinson’s disease.

The National Parkinson Foundation estimates 1.5 million Americans currently have Parkinson’s disease and about 60,000 new cases are diagnosed each year. It is caused by the death or impairment of certain nerve cells in a part of the brain called the substantia nigra. When these cells die, the body is deprived of dopamine, a neurotransmitter vital for movement.

“We know of several enzymes that can cause phosphorylation in the proper position of the alpha-synuclein protein,” said Oleg Gorbatyuk, Ph.D., an assistant professor of molecular genetics and microbiology. “Increasing their expression in brains afflicted with Parkinson’s disease could possibly provide a gene therapy approach to the disease.”

In experiments described in the Jan. 15 issue of PNAS, UF researchers used gene transfer to enhance the production of three versions of alpha-synuclein in the substantia nigra region on one side of the rats’ brains. The other side was not treated, for comparison purposes.

Of the types of alpha-synuclein, the one that simulated phosphorylation at position 129 of the protein was nontoxic. But the other versions of the protein all caused significant loss of dopamine neurons in the substantia nigra.

“Adding a phosphate group is about the smallest thing that can possibly happen in biology,” said Mark R. Cookson, an investigator in the Cell Biology and Gene Expression Unit of the National Institute on Aging who was not involved in the research. “But this relatively minor, innocuous change can switch everything around from being a big problem to being no problem. This research really gives us an idea of some things going on in inherited cases of Parkinson’s disease, and if we use that genetic information as a handle to get into the common disease, it is possible to take this from genetics to a drug discovery program.”

John D. Pastor | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Alpha-Synuclein Genetic Parkinson

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>