Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing Sunlight

28.02.2008
Indoline dyes improve efficiency of solar cells

Solar cell technology is marching ahead, though it still struggles with the two problems: efficiency and high production costs. In collaboration with Satoshi Uchida at the University of Tokyo, Michael Grätzel and his research group at the Swiss Federal Institute of Technology in Lausanne have now developed new sensitizers that should help an inexpensive type of solar cell to be more efficient. As they report in the journal Angewandte Chemie, the sensitizers are based on the dye indoline.

Some years ago, Grätzel developed photoelectrochemical solar cells that are inexpensive, easy to produce, and able to withstand long exposure to light and heat. These "Grätzel cells" contain a mesoscopic layer of titanium oxide (TiO2) particles coated with a sensitizing dye. Upon irradiation with light, electrons are injected from the dye adsorbed on the TiO2, which are then transferred to the conducting band of the TiO2 and collected at the back contact, and carried away by an external circuit. In order for the cell to work, the electrons that are injected into the TiO2 must not recombine with the oxidized dye.

To prevent this, the cell contains an electrolyte solution with negatively charged iodide and triiodide ions as a redox couple dissolved in a solvent, which immediately reduce the holes created in the dye. The main disadvantage of using volatile organic solvent in the electrolyte is the need for encapsulation of the electrolyte. Ionic liquids are an alternative to the use of these volatile solvent. These salts exist as liquids at low temperatures and do not evaporate. However, the high viscosity of these electrolytes is detrimental to the mass transport and consequently a problem for obtaining high efficiency.

... more about:
»Efficiency »Electron »Grätzel »TiO2 »dye »electrolyte »sensitizer

Grätzel and his team compensated for this loss of efficiency by optimizing the sensitizer. In place of the usual ruthenium dyes, they used tailor-made organic dyes based on indoline, which have a higher molar extinction coefficient. This allows the TiO2 films to be thinner, in turn reducing the electron path length. The combination thus attained an energy conversion yield of 7.2 %. This is a record for this type of cell (organic dye, ionic liquid, titanium oxide).

In this case the efficiency of the dye as a sensitizer is not only dependent on its chromophore, but also on its interfacial properties. So using a dye with an additional hydrocarbon chain has improved the performance by retarding the back electron reaction.

Author: Michael Grätzel, Ecole Polytechnique Fédérale de Lausanne (Switzerland), http://lpi.epfl.ch/

Title: Organic Dye-Sensitized Ionic Liquid Based Solar Cells: Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers

Angewandte Chemie International Edition 2008, 47, No. 10, 1923–1927, doi: 10.1002/anie.200705225

Michael Grätzel | Angewandte Chemie
Further information:
http://lpi.epfl.ch/
http://pressroom.angewandte.org

Further reports about: Efficiency Electron Grätzel TiO2 dye electrolyte sensitizer

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>