Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing Sunlight

28.02.2008
Indoline dyes improve efficiency of solar cells

Solar cell technology is marching ahead, though it still struggles with the two problems: efficiency and high production costs. In collaboration with Satoshi Uchida at the University of Tokyo, Michael Grätzel and his research group at the Swiss Federal Institute of Technology in Lausanne have now developed new sensitizers that should help an inexpensive type of solar cell to be more efficient. As they report in the journal Angewandte Chemie, the sensitizers are based on the dye indoline.

Some years ago, Grätzel developed photoelectrochemical solar cells that are inexpensive, easy to produce, and able to withstand long exposure to light and heat. These "Grätzel cells" contain a mesoscopic layer of titanium oxide (TiO2) particles coated with a sensitizing dye. Upon irradiation with light, electrons are injected from the dye adsorbed on the TiO2, which are then transferred to the conducting band of the TiO2 and collected at the back contact, and carried away by an external circuit. In order for the cell to work, the electrons that are injected into the TiO2 must not recombine with the oxidized dye.

To prevent this, the cell contains an electrolyte solution with negatively charged iodide and triiodide ions as a redox couple dissolved in a solvent, which immediately reduce the holes created in the dye. The main disadvantage of using volatile organic solvent in the electrolyte is the need for encapsulation of the electrolyte. Ionic liquids are an alternative to the use of these volatile solvent. These salts exist as liquids at low temperatures and do not evaporate. However, the high viscosity of these electrolytes is detrimental to the mass transport and consequently a problem for obtaining high efficiency.

... more about:
»Efficiency »Electron »Grätzel »TiO2 »dye »electrolyte »sensitizer

Grätzel and his team compensated for this loss of efficiency by optimizing the sensitizer. In place of the usual ruthenium dyes, they used tailor-made organic dyes based on indoline, which have a higher molar extinction coefficient. This allows the TiO2 films to be thinner, in turn reducing the electron path length. The combination thus attained an energy conversion yield of 7.2 %. This is a record for this type of cell (organic dye, ionic liquid, titanium oxide).

In this case the efficiency of the dye as a sensitizer is not only dependent on its chromophore, but also on its interfacial properties. So using a dye with an additional hydrocarbon chain has improved the performance by retarding the back electron reaction.

Author: Michael Grätzel, Ecole Polytechnique Fédérale de Lausanne (Switzerland), http://lpi.epfl.ch/

Title: Organic Dye-Sensitized Ionic Liquid Based Solar Cells: Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers

Angewandte Chemie International Edition 2008, 47, No. 10, 1923–1927, doi: 10.1002/anie.200705225

Michael Grätzel | Angewandte Chemie
Further information:
http://lpi.epfl.ch/
http://pressroom.angewandte.org

Further reports about: Efficiency Electron Grätzel TiO2 dye electrolyte sensitizer

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>