Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link shows bats flew first, developed echolocation later

14.02.2008
The discovery of a remarkably well-preserved fossil representing the most primitive bat species known to date demonstrates that the animals evolved the ability to fly before they could echolocate.

The new species, named Onychonycteris finneyi, was unearthed in 2003 in southwestern Wyoming and is described in a study in the Feb. 14 issue of the journal Nature, on which University of Michigan paleontologist Gregg Gunnell is a coauthor along with researchers from the American Museum of Natural History (AMNH) in New York, the Royal Ontario Museum in Canada and the Senckenberg Research Institute in Germany. A cast of one of the two known specimens is on permanent display in the U-M Exhibit Museum of Natural History's Hall of Evolution.

"There has been a longstanding debate about how bats evolved, centering around the development of flight and the development of the sonar system they use to navigate and hunt for prey," said Gunnell, an associate research scientist at the U-M Museum of Paleontology. "The three main theories have been that they developed the two abilities together, that flight came first, or that sonar came first. Based on the specimen described in this paper, we were able to determine that this particular animal was not capable of echolocating, which then suggests that bats flew before they developed their echolocation ability."

Bats represent one of the largest and most diverse orders of mammals, accounting for one-fifth of all living mammal species. The well-preserved condition of the new fossil permitted the scientists to take an unprecedented look at the most primitive known member of the order Chiroptera.

"When we first saw it, we knew it was special," said lead author Nancy Simmons of AMNH. "It's clearly a bat, but unlike any previously known. In many respects it is a missing link between bats and their non-flying ancestors."

Dating the rock formation in which the fossil was found put its age at 52 million years. Onychonycteris was not the only bat alive at the time---fossils of Icaronycteris, a more modern bat that could echolocate, are found in the same formations.

A careful examination of Onychonycteris's physical characteristics revealed several surprising features. For example, it had claws on all five of its fingers, whereas modern bats have, at most, claws on only two digits of each hand. The limb proportions of Onychonycteris are also different from all other bats---the hind legs are longer and the forearm shorter---and more similar to those of climbing mammals that hang under branches, such as sloths and gibbons.

The fossil's limb form and the appearance of claws on all the fingers suggest that Onychonycteris may have been a skilled climber. However, long fingers, a keeled breastbone and other features indicate that Onychonycteris could fly under its own power like modern bats. It had short, broad wings, which suggest that it probably could not fly as far or as fast as most bats that came after it. Instead of flapping its wings continuously while flying it may have alternated flapping and gliding while in the air. Onychonycteris's teeth indicate that its diet consisted primarily of insects, just like that of most living bats.

"We don't know what the initial incentive was to take to the air," Gunnell said. "My thought is that these bats probably were commuters at first---developing the ability to fly allowed them to travel to a particular place to feed, then fly back to their nesting area." Eventually, selective pressures likely favored the development of more sustained and agile flight, allowing bats to hunt on the wing.

Despite Onychonycteris's resemblance to animals that came after it, its skull lacks features in and around the ear seen in bats that use echolocation to navigate and hunt. The structure of its feet and ankles, which include a special, spur-like bone that likely supported a tail membrane, led the researchers to conclude that Onychonycteris had the broad tail that modern bats use to capture prey in flight, but that the structure probably was used as an airfoil to aid maneuvering. Without echolocation, Onychonycteris likely had to make do with visual, olfactory, or passive audio cues to hunt.

"It finally gives us an answer," Simmons said. "Flying evolved first, echolocation second."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Onychonycteris developed echolocation mammal

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>