Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats depleted of salt become sensitized to amphetamine, show unusual growth of brain cells

04.06.2002


Laboratory rats that have been repeatedly depleted of salt become sensitized to amphetamine, exhibiting an exaggerated hyperactive response to the drug and an unusual pattern of neuronal growth in a part of their brains, neuroscientists have found.



The researchers, headed by University of Washington psychologist Ilene Bernstein, discovered that nerve cells in the nucleus accumbens of sensitized rats have more branches and were 30 percent to 35 percent longer than normal. The nucleus accumbens, located in the forebrain, is involved in the reward and motivation system in rats and in humans. It is associated with regulating motivated behaviors of such natural drives as those for food and salt, and for artificial rewards provided by drugs.

The findings are published in the current issue of the Journal of Neuroscience.


"This number, 30 to 35 percent, is startling and implies an ability for neurons to make more connections," said Bernstein.

The research was triggered by several recent papers. One reported that rats sensitized to amphetamine showed this type of neuron growth. A second found that rats deprived of food seemed to be amphetamine sensitized. When an animal or person becomes sensitized their behavior changes. With amphetamine, animals and people become hyperactive. Rats that are salt sensitized drink and eat salt more rapidly and in greater quantities. Why they behave this way is unknown, Bernstein said.

"That research and ours seem to indicate that being hungry or sodium deprived enough can change an animal’s or a person’s response to a drug even if they have not been exposed to the drug previously," she said.

"We don’t know if this holds up in humans. But the same part of the brain and the response to drugs holds up across species. The same systems are involved in rats and humans when it comes to amphetamines and cocaine. This suggests evidence of a common natural substrate to natural and artificial rewards that is worth further investigation."

She added that the findings also point to questions that need to be explored. These include determining how long cross sensitization persists and whether physical challenges such as salt depletion alter people’s responses to drugs.

"There is differential response among people who are challenged or stressed based on their history. Some people may have a life-long susceptibility to these kinds of things. We also need to know why these drugs are so powerful and what systems they are taking advantage of that didn’t evolve naturally."

In the study, the researchers first gave a group of rats diuretics to deplete them of salt. Then they gave the animals a 3 percent saltwater solution, a mixture they ordinarily would not like or drink. This procedure was repeated two more times, with each treatment given a week apart.

Then the animals’ brains were examined under a microscope, revealing the 30 percent to 35 percent increase in neuron growth in the nucleus accumbens compared to the brains of normal rats. The ends of brain cells, or dendrites, are where neurons make connections with other neurons, implying an ability to make more connections, said Bernstein.

To check for cross sensitization to amphetamine, another group of rats was salt depleted twice. Then they were allowed to explore an open, dark plastic enclosure with the floor divided into a grid by white tape. A week after the second salt depletion, the rats and a control group of animals were injected with amphetamine and placed in the enclosure.

The psychostimulant effects of the drugs were measured by two behaviors – the number of taped lines each animal crossed over and how many times it reared up on its hind feet. The two groups didn’t differ in the number of lines each crossed, but the salt-depleted rats showed significantly more rearing behavior.

What was particularly striking about the findings is that they occurred relatively quickly, just two weeks after the first salt-depletion treatment, said Bernstein.


Other members of the research team included Mitchell Roitman, a UW graduate who is now a post-doctoral researcher at the University of North Carolina, and Theresa Jones, an assistant psychology professor at the University of Texas. The UW’s Royalty Research Fund supported the research.

For more information, contact Bernstein at (206) 543-4527 or ileneb@u.washington.edu


Joel Schwarz | EurekAlert

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>