Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Role of Cell Death Protein TRADD in Viral Signaling

15.01.2008
Epstein-Barr virus is incredibly common in humans; up to 95% of adults in the developed world have been infected, which causes glandular fever and has been linked to the development of several forms of cancer. Research published in this week’s PLoS Biology investigates the way that the virus manipulates TRADD—a human protein—in order to establish itself in the host.

Epstein-Barr virus alters the way cells in the human immune system, called B lymphocytes, behave, transforming them into cancerous cells that survive and divide more than they should. It seems strange that TRADD can be involved in transforming cells to do this, because in a healthy person, TRADD is important in doing just the opposite: it causes apoptosis—organized cell death.

Researchers based in the GSF – National Research Centre for Environment and Health (from 2008: Helmholtz Zentrum Muenchen), in Munich, studied the way that TRADD interacts with LMP1, a protein produced by the virus that is essential for cell transformation. They genetically altered cells so that they wouldn’t produce any TRADD and found that these cells didn’t respond to the transformation signals sent by the LMP1 protein, showing that TRADD is necessary for this change. They studied the shape of the viral protein LMP1, and showed that a region of it binds to TRADD in a unique way. When TRADD is bound to LMP1, it is unable to interact with the molecules that it normally would, and so it cannot cause cell death as it is meant to.

The researchers, led by Dr. Arnd Kieser, took the unique TRADD binding site that they had identified on the viral protein and used it to replace the TRADD binding site on the host cellular protein that mediates cell death. This was enough to convert the cellular protein into a non-apoptotic receptor and thus to stop TRADD from inducing apoptosis. This is excellent evidence that they have correctly identified the mechanism that the viral protein uses to transform B lymphocytes.

... more about:
»LMP1 »Syn »TRADD »formation

“It is amazing to learn which sophisticated molecular means this human tumor virus has developed to take control of the communication system of its host cell,” Kieser said. “The unique interaction of LMP1 with TRADD could serve as a target structure for drug development against EBV-induced cancers.”

Conformational Equilibria in Monomeric a-Synuclein at the Single-Molecule Level

Natively unstructured proteins defy the classical “one sequence-one structure” paradigm of protein science. In pathological conditions, monomers of these proteins can aggregate in the cell, a process that underlies neurodegenerative diseases such as Alzheimer and Parkinson. A key step in the aggregation process, the formation of misfolded intermediates, remains obscure. This week in the open-access online journal PLoS Biology, researchers Luigi Bubacco, Bruno Samori and colleagues characterized the folding and conformational diversity of ?Syn, a natively unstructured protein involved in Parkinson disease, by mechanically stretching single molecules of this protein and recording their mechanical properties. These experiments permitted them to directly observe and quantify three main classes of conformations that, under in vitro physiological conditions, exist simultaneously in the ?Syn sample. They found that one class of conformations, “?-like” structures, is directly related to ?Syn aggregation. In fact, their relative abundance increases drastically in three different conditions known to promote the formation of ?Syn fibrils. They expect that a critical concentration of ?Syn with a “?-like” structure must be reached to trigger fibril formation. This critical concentration is therefore controlled by a chemical equilibrium. Novel pharmacological strategies can now be tailored to act upstream, before the aggregation process ensues, by targeting this equilibrium. To this end, Single Molecule Force Spectroscopy can be an effective tool to tailor and test new pharmacological agents.

Citation: Sandal M, Valle F, Tessari I, Mammi S, Bergantino E, et al. (2008) Conformational equilibria in monomeric a-synuclein at the single-molecule level. PLoS Biol 6(1): e6.doi:10.1371/journal.pbio.0060006

CONTACT:
Bruno Samori
University of Bologna
Department of Biochemistry
Bologna, 40126
Italy
+39 05 12 09 43 87
bruno.samori@unibo.it

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get- document&doi=10.1371/journal.pbio.0060006

Further reports about: LMP1 Syn TRADD formation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>