Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB research could improve the prognosis and treatment of lung cancer

08.01.2008
A group of scientists led by Professor Xavier Parés of the Department of Biochemistry and Molecular Biology at Universitat Autònoma de Barcelona, has published a research on AKR1B10, an enzyme that is detected in large quantities only in lung cancers, particularly those caused by smoking.

This enzyme can appear even when the cancer has not yet developed and lesions are precancerous. Thus this molecule would serve as a good marker in the diagnosis and prognosis of the disease. Moreover, its activity could play a relevant role in the development of lung cancer, which makes the research of great interest for potential future therapeutical applications as well.

According to researchers, both the experiments using test tubes and cell cultures revealed that the enzyme lowers the levels of the most active form of vitamin A (retinoic acid), a strong anticancerous agent. This is achieved by its strong retinal reductase activity, which favours chemical reduction transformation, thus causing retinal, the precursor of retinoic acid, to transform into its least active form, retinol.

Retinoic acid is present in several biological processes - from fetus development to cell proliferation and differentiation - by controlling the expression of certain genes. The reduction of this acid within cells, which is precisely the effect produced by the enzyme under study, is linked directly to the lack of cell differentiation and therefore favours the development of the cancer. In order to discover why the enzyme acts this way, scientists obtained and studied its three-dimensional structure and located the elements responsible for its role in the onset of cancer among smokers. The identification of these structural elements makes it possible to create a specific design for drugs that can treat this disease. In fact, researchers were able to observe how the substance tolrestat, used as an inhibitor of the enzyme AKR1B1, or aldose reductase, responsible for many secondary complications of diabetes, also worked to inhibit the activity of the enzyme AKR1B10. Since both enzymes contain similar structures, research was carried out on its possible applications in the treatment of diabetes.

... more about:
»Development »UAB »acid »activity »enzyme »prognosis
The research, published in the prestigious American journal Proceedings of the National Academy of Sciences (PNAS), was directed by Xavier Parés and Jaume Farrés of the UAB Department of Biochemistry and Molecular Biology, with the collaboration of scientists from the Biomedical Research Institute of the Science Park of Barcelona (PCB), the Institute of Molecular Biology of Barcelona (CSIC), the Catalan Institute for Research and Advanced Studies (ICREA), and the Department of Organic Chemistry of the University of Vigo, Galicia.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

Further reports about: Development UAB acid activity enzyme prognosis

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>