Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light powered platinum more targeted & 80 times more powerful than similar cancer treatments

21.12.2007
Researchers from the Universities of Warwick, Edinburgh, Dundee and the Czech Republic’s Institute of Biophysics have discovered a new light-activated platinum-based compound that is up to 80 times more powerful than other platinum-based anti-cancer drugs and which can use “light activation” to kill cancer cells in much more targeted way than similar treatments.

The platinum-based compound known as “trans, trans, trans- [Pt(N3)2(OH)2(NH3)(py)]”, or a light activated PtIV complex, is highly stable and non-toxic if left in the dark but if light falls upon it becomes much less stable and highly toxic to cancer cells. In fact it is between 13 and 80 times more toxic (depending on how and on which cells it is used) to cancer cells than the current platinum based anti-cancer drug Cisplatin. Moreover it kills the cells by a different mechanism of action, so it can also kill cisplatin-resistant cells.

Professor Peter Sadler, Chairman of the Chemistry Department of the University of Warwick, who led the research project said:

“Light activation provides its massive toxic power and also allows treatment to be targeted much more accurately against cancer cells.”

... more about:
»Cancer »Platinum »compound »targeted »toxic

The compound could be used in particular to treat surface cancers. Patients could be treated in a darkened environment with light directed specifically at cancer cells containing the compound activating the compound’s toxicity and killing those cells. Normal cells exposed to the compound would be protected by keeping the patient in darkness until the compound has passed through and out of the patient.

The new light activated PtIV complex is also more efficient in its toxic action on cancer cells in that, unlike other compounds currently used in photodynamic therapy, it does not require the presence of significant amounts of oxygen within a cancer cell to become toxic. Cancer cells tend to have less oxygen present than normal cells.

Although this work is in its early stages, the researches are hopeful that, in a few years time, the new platinum compound could be used in a new type of photoactivated chemotherapy for cancer.

Note for editors: The research has just been published in PNAS (The Proceedings of the National Academy of Science, under the title “A potent cytotoxic photoactivated platinum complex”. The authors are – Project leader Professor Peter Sadler, (University of Warwick) and Ana M. Pizarro (University of Warwick); Fiona S. Mackay, Stephen A. Moggach, Simon Parsons (University of Edinburgh), Julie A. Woods (University of Dundee), Pavla Heringová, Jana Kašpárková, and Viktor Brabec (Institute of Biophysics, Academy of Sciences of the Czech Republic).

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/light_powered_platinum/

Further reports about: Cancer Platinum compound targeted toxic

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017 | Health and Medicine

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>